ترغب بنشر مسار تعليمي؟ اضغط هنا

The sub-energetic GRB 031203 as a cosmic analogue to GRB 980425

57   0   0.0 ( 0 )
 نشر من قبل Alicia Soderberg
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the six years since the discovery of the gamma-ray burst GRB 980425, associated with the nearby (distance, ~40 Mpc) supernova 1998bw, astronomers have fiercely debated the nature of this event. Relative to bursts located at cosmological distances, (redshift, z~1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed the explosion was sub-energetic by a factor of 10. Here, we report observations of the radio and X-ray afterglow of the recent z=0.105 GRB 031203 and demonstrate that it too is sub-energetic. Our result, when taken together with the low gamma-ray luminosity, suggest that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. Intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRBs 031203 and 980425) may enable us to reveal their expected large population.



قيم البحث

اقرأ أيضاً

64 - D. Watson 2005
GRB031203 was a very low apparent luminosity gamma-ray burst (GRB). It was also the first GRB with a dust-scattered X-ray halo. The observation of the halo allowed us to infer the presence of a large soft X-ray fluence in the total burst output. It h as, however, also been claimed that GRB031203 was intrinsically sub-energetic, representative of a class of spectrally hard, low-energy bursts quite different from other GRBs. Reanalysis of the available data confirms our original finding that GRB031203 had a very large soft X-ray component, the time of which can be constrained to within a few minutes after the burst, implying that while GRB031203 did indeed have a very low apparent luminosity, it was also very soft. Notions propagated in the literature regarding the uncertainties in the determination of the soft X-ray fluence from the halo data and on the available constraints from the hard X-ray data are addressed: the properties of the scattering dust along the line of sight (grain sizes, precise location and the geometry) are determined directly from the high quality X-ray data so that there is little uncertainty about the scatterer; constraints on the X-ray lightcurve from the Integral spacecraft at the time of the soft X-ray blast are not complete because of a slew in the spacecraft pointing shortly after the burst. Claims that GRB031203 was intrinsically under-energetic and that it represents a deviation from the luminosity-peak energy relation do not appear to be substantiated by the data, regardless of whether the soft X-ray component is declared part of the prompt emission or the afterglow. We conclude that the difference between the soft and hard X-ray spectra from XMM-Newton and Integral indicate that a second soft pulse probably occurred in this burst as has been observed in other GRBs, notably GRB050502B.
(abridged) The association of GRB 980425 with SN 1998bw at z=0.0085 implies the existence of a population of GRBs with an isotropic-equivalent luminosity which is about 10^4 times smaller than in the standard cosmological case. We investigate two sce narios to explain a weak GRB : a normal (intrinsically bright) GRB seen off-axis or an intrinsically weak GRB seen on-axis. For each of these two scenarios, we first derive the conditions to produce a GRB 980425-like event and we then discuss the consequences for the event rate. If we exclude the possibility that GRB 980425 is an occurence of an extremely rare event observed by chance during the first eight years of the afterglow era, the first scenario implies that (i) the local rate of standard bright GRBs is much higher than what is usually expected; (ii) the typical opening angle is much narrower than what is derived from observations of a break in the afterglow lightcurve. In addition, we show that the afterglow of GRB 980425 in this scenario should have been very bright and easily detected. For these reasons the second scenario appears more realistic. We show that the parameter space of the internal shock model indeed allows GRB 980425-like events, in cases where the outflow is only mildly-relativistic and mildly-energetic. The rate of such weak events in the Universe has to be much higher than the rate of standard bright GRBs to allow the discovery of GRB 980425 during a short period of a few years. However it is still compatible with the observations as the intrinsic weakness of these GRB 980425-like bursts does not allow detection at cosmological redshift. We finally briefly discuss the consequences of such a high local rate of GRB 980425-like events for the future prospects of detecting non-electromagnetic radiation, especially gravitational waves.
We report Giant Metrewave Radio Telescope (GMRT) , Very Large Telescope (VLT) and Spitzer Space Telescope observations of ESO 184$-$G82, the host galaxy of GRB 980425/SN 1998bw, that yield evidence of a companion dwarf galaxy at a projected distance of 13 kpc. The companion, hereafter GALJ193510-524947, is a gas-rich, star-forming galaxy with a star formation rate of $rm0.004,M_{odot}, yr^{-1}$, a gas mass of $10^{7.1pm0.1} M_{odot}$, and a stellar mass of $10^{7.0pm0.3} M_{odot}$. The interaction between ESO 184$-$G82 and GALJ193510-524947 is evident from the extended gaseous structure between the two galaxies in the GMRT HI 21 cm map. We find a ring of high column density HI gas, passing through the actively star forming regions of ESO 184$-$G82 and the GRB location. This ring lends support to the picture in which ESO 184$-$G82 is interacting with GALJ193510-524947. The massive stars in GALJ193510-524947 have similar ages to those in star-forming regions in ESO 184$-$G82, also suggesting that the interaction may have triggered star formation in both galaxies. The gas and star formation properties of ESO 184$-$G82 favour a head-on collision with GALJ193510-524947 rather than a classical tidal interaction. We perform state-of-the art simulations of dwarf--dwarf mergers and confirm that the observed properties of ESO 184$-$G82 can be reproduced by collision with a small companion galaxy. This is a very clear case of interaction in a gamma ray burst host galaxy, and of interaction-driven star formation giving rise to a gamma ray burst in a dense environment.
260 - K.Iwamoto 1998
We calculate radio-to-X-ray light curves for afterglows caused by non-thermal emission from a highly relativistic blast wave, which is inferred from the gamma-ray flux detected in GRB 980425 and from the very bright radio emission detected in SN 1998 bw. We find that the observed gamma-ray and radio light curves are roughly reproduced by the synchrotron emission from a relativistic fireball. The optical flux predicted for the non-thermal emission is well below that of the thermal emission observed for SN 1998bw so that it will not be seen at least for a few years. The model predicts the X-ray flux just above the detection limit of BeppoSAX for the epoch when it was pointed to the field of GRB980425. Therefore, the nondetection of X-ray and optical afterglows is consistent with the model. The models presented here are consistent with the physical association between SN 1998bw and GRB980425, and lend further support to the idea that this object might correspond to an event similar to the ``hypernova or ``collapsar -- events in which the collapse of a massive star forms a rotating black hole surrounded by a disk of the remnant stellar mantle.
The Gamma-Ray Burst 031203 at a redshift z=0.1055 revealed a highly reddened Type Ic Supernova, SN 2003lw, in its afterglow light. This is the third well established case of a link between a long-duration GRB and a type Ic SN. The SN light curve is o btained subtracting the galaxy contribution and is modelled together with two spectra at near-maximum epochs. A red VLT grism 150I spectrum of the SN near peak is used to extend the spectral coverage, and in particular to constrain the uncertain reddening, the most likely value for which is E_{G+H}(B-V) about 1.07 +/- 0.05. Accounting for reddening, SN 2003lw is about 0.3 mag brighter than the prototypical GRB-SN 1998bw. Light curve models yield a 56Ni mass of about 0.55 solar mass. The optimal explosion model is somewhat more massive (ejecta mass about 13 solar mass) and energetic (kinetic energy about 6 times 10^52 erg) than the model for SN 1998bw, implying a massive progenitor (40 - 50 solar mass). The mass at high velocity is not very large (1.4 solar mass above 30000 km/s, but only 0.1 solar mass above 60000 km/s), but is sufficient to cause the observed broad lines. The similarity of SNe 2003lw and 1998bw and the weakness of their related GRBs, GRB031203 and GRB980425, suggest that both GRBs may be normal events viewed slightly off-axis or a weaker but possibly more frequent type of GRB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا