ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpreting the Relationship Between Galaxy Luminosity, Color and Environment

93   0   0.0 ( 0 )
 نشر من قبل Andreas A. Berlind
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the relationship between galaxy luminosity, color, and environment in a cosmological simulation of galaxy formation. We compare the predicted relationship with that found for SDSS galaxies and find that the model successfully predicts most of the qualitative features seen in the data, but also shows some interesting differences. Specifically, the simulation predicts that the local density around bright red galaxies is a strong increasing function of luminosity, but does not depend much on color at fixed luminosity. Moreover, we show that this is due to central galaxies in dark matter halos whose baryonic masses correlate strongly with halo mass. The simulation also predicts that the local density around blue galaxies is a strong increasing function of color, but does not depend much on luminosity at fixed color. We show that this is due to satellite galaxies in halos whose stellar ages correlate with halo mass. Finally, the simulation fails to predict the luminosity dependence of environment observed around low luminosity red galaxies. However, we show that this is most likely due to the simulations limited resolution. A study of a higher resolution, smaller volume simulation suggests that this dependence is caused by the fact that all low luminosity red galaxies are satellites in massive halos, whereas intermediate luminosity red galaxies are a mixture of satellites in massive halos and central galaxies in less massive halos.

قيم البحث

اقرأ أيضاً

We analyse the u-r color distribution of 24346 galaxies with Mr<=-18 and z<0.08, drawn from the Sloan Digital Sky Survey first data release, as a function of luminosity and environment. The color distribution is well fit with two Gaussian distributio ns, which we use to divide the sample into a blue and red population. At fixed luminosity, the mean color of the blue (red) distribution is nearly independent of environment, with a weakly significant (~3sigma) detection of a trend for colors to become redder by 0.1-0.14 (0.03-0.06) mag with a factor ~100 increase in local density, as characterised by the surface density of galaxies within a +/-1000 km/s redshift slice. In contrast, at fixed luminosity the fraction of galaxies in the red distribution is a strong function of local density, increasing from ~10-30 per cent of the population in the lowest density environments, to ~70 per cent at the highest densities. The strength of this trend is similar for both the brightest (-23<Mr<-22) and faintest (-19<Mr<-18) galaxies in our sample. The fraction of red galaxies within the virialised regions of clusters shows no significant dependence on velocity dispersion. Even at the lowest densities explored, a substantial population of red galaxies exists, which might be fossil groups. We propose that most star-forming galaxies today evolve at a rate that is determined primarily by their intrinsic properties, and independent of their environment. Any environmentally triggered transformations from blue to red colors must either occur on a short timescale, or preferentially at high redshift, to preserve the simple Gaussian nature of the color distribution. The mechanism must be effective for both bright and faint galaxies.
We derive the bar fraction in three different environments ranging from the field to Virgo and Coma clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred ga laxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of galaxy luminosity (and mass) in the field and Coma cluster are statistically significant, with Virgo being an intermediate case. We interpret this result as a variation of the effect of environment on bar formation depending on galaxy luminosity. We speculate that brighter disk galaxies are stable enough against interactions to keep their cold structure, thus, the interactions are able to trigger bar formation. For fainter galaxies the interactions become strong enough to heat up the disks inhibiting bar formation and even destroying the disks. Finally, we point out that the controversy regarding whether the bar fraction depends on environment could be resolved by taking into account the different luminosity ranges of the galaxy samples studied so far.
A string of recent studies has debated the exact form and physical origin of an evolutionary trend between the peak luminosity of Type Ia supernovae (SNe Ia) and the properties of the galaxies that host them. We shed new light on the discussion by pr esenting an analysis of ~200 low-redshift SNe Ia in which we measure the separation of Hubble residuals (HR; as probes of luminosity) between two host-galaxy morphological types. We show that this separation can test the predictions made by recently proposed models, using an independently and empirically determined distribution of each morphological type in host-property space. Our results are partially consistent with the new HR--age slope, but we find significant scatter in the predictions from different galaxy catalogues. The inconsistency in age illuminates an issue in the current debate that was not obvious in the long-discussed mass models: HR--host-property models are strongly dependent on the methods employed to determine galaxy properties. While our results demonstrate the difficulty in constructing a universal model for age as a proxy for host environment, our results indeed identify evolutionary trends between mass, age, morphology, and HR values, encouraging (or requiring, if such trends are to be accounted for in cosmological studies) further investigation.
We present the first study of GALEX far ultra-violet (FUV) luminosity functions of individual star-forming regions within a sample of 258 nearby galaxies spanning a large range in total stellar mass and star formation properties. We identify ~65,000 star-forming regions (i.e., FUV sources), measure each galaxys luminosity function, and characterize the relationships between the luminosity function slope (alpha) and several global galaxy properties. A final sample of 82 galaxies with reliable luminosity functions are used to define these relationships and represent the largest sample of galaxies with the largest range of galaxy properties used to study the connection between luminosity function properties and galaxy environment. We find that alpha correlates with global star formation properties, where galaxies with higher star formation rates and star formation rate densities (Sigma_SFR) tend to have flatter luminosity function slopes. In addition, we find that neither stochastic sampling of the luminosity function in galaxies with low-number statistics nor the effects of blending due to distance can fully account for these trends. We hypothesize that the flatter slopes in high Sigma_SFR galaxies is due to higher gas densities and higher star formation efficiencies which result in proportionally greater numbers of bright star-forming regions. Finally, we create a composite luminosity function composed of star-forming regions from many galaxies and find a break in the luminosity function at brighter luminosities. However, we find that this break is an artifact of varying detection limits for galaxies at different distances.
gamma Cas is the prototypical classical Be star and is best known for its variable hard X-ray emission. To elucidate the reasons for this emission, we mounted a multiwavelength campaign in 2010 centered around 4 XMM observations. The observational te chniques included long baseline optical interferometry (LBOI), monitoring by an Automated Photometric Telescope and Halpha observations. Because gamma Cas is also known to be in a binary, we measured Halpha radial velocities and redetermined its period as 203.55+/-0.2 days and an eccentricity near zero. The LBOI observations suggest that the stars decretion disk was axisymmetric in 2010, has an inclination angle near 45^o, and a larger radius than previously reported. The Be star began an outburst at the beginning of our campaign, made visible by a disk brightening and reddening during our campaign. Our analyses of the new high resolution spectra disclosed many attributes found from spectra obtained in 2001 (Chandra) and 2004 (XMM). As well as a dominant hot 14 keV thermal component, these familiar ones included: (i) a fluorescent feature of Fe K stronger than observed at previous times, (ii) strong lines of N VII and Ne XI lines indicative of overabundances, and (iii) a subsolar Fe abundance from K-shell lines but a solar abundance from L-shell ions. We also found that 2 absorption columns are required to fit the continuum. While the first one maintained its historical average of 1X10^21 cm^-2, the second was very large and doubled to 7.4X10^23 cm^-2 during our X-ray observations. Although we found no clear relation between this column density and orbital phase, it correlates well with the disk brightening and reddening both in the 2010 and earlier observations. Thus, the inference from this study is that much (perhaps all?) of the X-ray emission from this source originates behind matter ejected by gamma Cas into our line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا