ترغب بنشر مسار تعليمي؟ اضغط هنا

The Stability Analysis of the Extrasolar Planetary Systems

58   0   0.0 ( 0 )
 نشر من قبل Jianghui Ji
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jianghui Ji




اسأل ChatGPT حول البحث

To date, more than 100 giant Jupiter-like planets have been discovered in Doppler surveys of solar-type stars. In this paper, we perform simulations to investigate three systems: GJ 876, HD 82943 and 55 Cnc. The former two systems both have a pair of planets in the 2:1 Mean Motion Resonance (MMR), while the inner two companions of the later is close to 3:1 MMR. By integrating hundreds of the planetary orbits of three systems for million years, we find that for GJ 876 and HD 82943, the critical argument $lambda_{1} - 2lambda_{2} + varpi_{1}$ and $lambda_{1} - 2lambda_{2} + varpi_{2}$ librate about $0^{circ}$ or $180^{circ}$, indicating 2:1 MMR can play an important role in stabilizing the motion of the planets so that they are protected from frequent close encounters. As for 55 Cnc, we further show the three resonant arguments for 3:1 MMR execute librations for millions of years respectively, which reveals the evidence of the resonance for this system. Additionally, we should emphasize another vital mechanism is the apsidal phase-locking between a couple of planets for a certain system. For GJ 876 and HD 82943, we discover the relative apsidal longitudes $varpi_{1} - varpi_{2}$ move about $0^{circ}$ or $180^{circ}$, respectively; but for 55 Cnc, we find that there exists an asymmetric apsidal libration between two inner planets. Finally, we made a brief discussion about the Habitable Zones in the exoplanetary systems.



قيم البحث

اقرأ أيضاً

111 - Ji Jianghui 2002
We carry out numerical simulations to explore the dynamical evolution of the HD 82943 and HD 37124 planetary systems,which both have two Jupiter-like planets. By simulating various planetary configurations in the neighborhood of the fitting orbits, w e find three mechanisms to maintain the stability of these systems: For HD 82943,we find that the 2:1 mean motion resonance can act as the first mechanism for all the stable orbits. The second mechanism is the alignment of the periastron of the two planets of HD 82943 system. In the paper,we show one case is simultaneously maintained by the two mechanisms. Additionally,we also use the corresponding analytical models successfully to explain the different numerical results for the system. The third mechanism is the Kozai resonance which takes place in the mutual highly orbits of HD 37124. In the simulations,we discover that the argument of periastron $omega$ of the inner planet librates about $90^{circ}$ or $270^{circ}$ for the whole time span. The Kozai mechanism can explain the stable configuration of large eccentricity of the inner planet.
Since very recently, we acquired knowledge on the existence of comets in extrasolar planetary systems. The formation of comets together with planets around host stars now seems evident. As stars are often born in clusters of interstellar clouds, the interaction between the systems will lead to the exchange of material at the edge of the clouds. Therefore, almost every planetary system should have leftover remnants as a result of planetary formation in form of comets at the edges of those systems. These Oort clouds around stars are often disturbed by different processes (e.g., galactic tides, passing stars, etc.), which consequently scatter bodies from the distant clouds into the system close to the host star. Regarding the Solar System, we observe this outcome in the form of cometary families. This knowledge supports the assumption of the existence of comets around other stars. In the present work, we study the orbital dynamics of hypothetical exocomets, based on detailed computer simulations, in three star-planet systems, which are: HD~10180, 47~UMa, and HD~141399. These systems host one or more Jupiter-like planets, which change the orbits of the incoming comets in characteristic ways.
170 - O. Absil 2010
In this paper, we review the various ways in which an infrared stellar interferometer can be used to perform direct detection of extrasolar planetary systems. We first review the techniques based on classical stellar interferometry, where (complex) v isibilities are measured, and then describe how higher dynamic ranges can be achieved with nulling interferometry. The application of nulling interferometry to the study of exozodiacal discs and extrasolar planets is then discussed and illustrated with a few examples.
We report the discovery of eight new giant planets, and updated orbits for four known planets, orbiting dwarf and subgiant stars using the CORALIE, HARPS, and MIKE instruments as part of the Calan-Hertfordshire Extrasolar Planet Search. The planets h ave masses in the range 1.1-5.4MJs, orbital periods from 40-2900 days, and eccentricities from 0.0-0.6. They include a double-planet system orbiting the most massive star in our sample (HD147873), two eccentric giant planets (HD128356b and HD154672b), and a rare 14 Herculis analogue (HD224538b). We highlight some population correlations from the sample of radial velocity detected planets orbiting nearby stars, including the mass function exponential distribution, confirmation of the growing body of evidence that low-mass planets tend to be found orbiting more metal-poor stars than giant planets, and a possible period-metallicity correlation for planets with masses >0.1MJ, based on a metallicity difference of 0.16 dex between the population of planets with orbital periods less than 100 days and those with orbital periods greater than 100 days.
This paper explores the stability of an Earth-like planet orbiting a solar-mass star in the presence of a stellar companion using ~ 400,000 numerical integrations. Given the chaotic nature of the systems being considered, we perform a statistical ana lysis of the ensuing dynamics for ~500 orbital configurations defined by the following set of orbital parameters: the companion mass; the companion eccentricity; the companion periastron; and the planets inclination angle relative to the stellar binary plane. Specifically, we generate a large sample of survival times for each orbital configuration through the numerical integration of N >> 1 equivalent experiments (e.g., with the same orbital parameters but randomly selected initial orbital phases). We then construct distributions of survival time using the variable mu_s = log tau_s (where tau_s is in years) for each orbital configuration. The primary objective of this work is twofold. First, we use the mean of the distributions to gain a better understanding of what orbital configurations, while unstable, have sufficiently long survival times to make them interesting to the study of planet habitability. Second, we calculate the width, skew, and kurtosis of each mu_s distribution and look for general features that may aid further understanding and numerical exploration of these chaotic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا