ترغب بنشر مسار تعليمي؟ اضغط هنا

Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

57   0   0.0 ( 0 )
 نشر من قبل Ian G. McCarthy
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ian G. McCarthy




اسأل ChatGPT حول البحث

(Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the cooling core structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as cooling flow clusters and dynamically relaxed non-cooling flow clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.



قيم البحث

اقرأ أيضاً

We have carried out an intensive study of the AGN heating-ICM cooling network by comparing various cluster parameters of the HIFLUGCS sample to the integrated radio luminosity of the central AGN, L_R, defined as the total synchrotron power between 10 MHz and 15 GHz. We adopt the central cooling time, t_cool, as the diagnostic to ascertain cooling properties of the clusters and classify clusters with t_cool < 1 Gyr as strong cooling core (SCC) clusters, with 1 Gyr < t_cool <7.7 Gyr as weak cooling core (WCC) clusters and with t_cool > 7.7 Gyr as non-cooling core (NCC) clusters. We find 48 out of 64 clusters (75%) contain cluster center radio sources (CCRS) cospatial with or within 50 h^{-1}_{71} kpc of the X-ray peak emission. Further, we find that the probability of finding a CCRS increases from 45% to 67% to 100% for NCC, WCC and SCC clusters, respectively, suggesting an AGN-feedback machinery in SCC clusters which regulates the cooling in the central regions. We find L_R in SCC clusters depends strongly on the cluster scale such that more massive clusters harbor more powerful radio AGN. The same trend is observed between L_R and the classical mass deposition rate, MDR, albeit much stronger, in SCC and partly also in WCC clusters. We also perform correlations of the 2MASS K-band luminosity of the brightest cluster galaxy, L_BCG, with L_R and cluster parameters. We invoke the relation between L_BCG and the black hole mass, M_BH, and find a surprisingly tight correlation between M_BH and L_R for SCC clusters. We find also an excellent correlation of L_BCG with M500 and L_X for the entire sample; however, SCC clusters show a tighter trend in both the cases. We discuss the plausible reasons behind these scaling relations in the context of cooling flows and AGN feedback. [Abridged]
We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) dataset. We focus on a sub-sample of 179 clusters at redshift z~0.11, with 3.2e14M_sun /h<M_vir<2e15Msun/h, complete in mass. We employed the X-ray photon simulator PHOX to obtain synthetic Chandra Observations and derive observable-like global properties of the intracluster medium (ICM), as X-ray temperature (T_X) and luminosity (L_X). T_X is found to slightly under-estimate the true mass-weighted temperature, although tracing fairly well the cluster total mass. We also study the effects of T_X on scaling relations with cluster intrinsic properties: total (M_500) and gas (M_g500) mass; integrated Compton parameter (Y_SZ) of the Sunyaev-Zeldovich (SZ) thermal effect; Y_X=M_g500 T_X. We confirm that Y_X is a very good mass proxy, with a scatter on M_500-Y_X and Y_SZ-Y_X lower than 5%. The study of scaling relations among X-ray, intrinsic and SZ properties indicates that MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving T_X. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting T_X and, particularly, L_X.
We present the analysis of XMM-Newton observations of two X-ray luminous cool core clusters, RXCJ1504.1-0248 and Abell 1664. The Reflection Grating Spectrometer reveals a radiative cooling rate of $180pm 40, rm M_{odot}rm,yr^{-1}$ and $34pm 6, rm M_{ odot}rm,yr^{-1}$ in RXCJ1504.1-0248 and Abell 1664 for gas above 0.7 keV, respectively. These cooling rates are higher than the star formation rates observed in the clusters, and support simultaneous star formation and molecular gas mass growth on a timescale of 3$times 10^8$ yr or longer. At these rates, the energy of the X-ray cooling gas is inadequate to power the observed UV/optical line-emitting nebulae, which suggests additional strong heating. No significant residual cooling is detected below 0.7 keV in RXCJ1504.1-0248. By simultaneously fitting the first and second order spectra, we place an upper limit on turbulent velocity of 300 km$rm s^{-1}$ at 90 per cent confidence level for the soft X-ray emitting gas in both clusters. The turbulent energy density is considered to be less than 8.9 and 27 per cent of the thermal energy density in RXCJ1504.1-0248 and Abell 1664, respectively. This means it is insufficient for AGN heating to fully propagate throughout the cool core via turbulence. We find the cool X-ray component of Abell 1664 ($sim$0.8 keV) is blueshifted from the systemic velocity by 750$^{+800}_{-280}$ km$rm s^{-1}$. This is consistent with one component of the molecular gas in the core and suggests a similar dynamical structure for the two phases. We find that an intrinsic absorption model allows the cooling rate to increase to $520pm 30, rm M_{odot}rm,yr^{-1}$ in RXCJ1504.1-0248.
We present results from a study of the X-ray cluster population that forms within the CLEF cosmological hydrodynamics simulation, a large N-body/SPH simulation of the Lambda CDM cosmology with radiative cooling, star formation and feedback. The scale d projected temperature and entropy profiles at z=0 are in good agreement with recent high-quality observations of cool core clusters, suggesting that the simulation grossly follows the processes that structure the intracluster medium (ICM) in these objects. Cool cores are a ubiquitous phenomenon in the simulation at low and high redshift, regardless of a clusters dynamical state. This is at odds with the observations and so suggests there is still a heating mechanism missing from the simulation. Using a simple, observable measure of the concentration of the ICM, which correlates with the apparent mass deposition rate in the cluster core, we find a large dispersion within regular clusters at low redshift, but this diminishes at higher redshift, where strong cooling-flow systems are absent in our simulation. Consequently, our results predict that the normalisation and scatter of the luminosity-temperature relation should decrease with redshift; if such behaviour turns out to be a correct representation of X-ray cluster evolution, it will have significant consequences for the number of clusters found at high redshift in X-ray flux-limited surveys.
Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC) and non-cool-core (NCC) based on their CCTs. The total radio lum inosity of the brightest cluster galaxy (BCG) was obtained using radio catalog data and literature, which was compared to the CCT to understand the link between gas cooling and radio output. We determined K-band luminosities of the BCG with 2MASS data, and used it to constrain the masses of the SMBH, which were then compared to the radio output. We also tested for correlations between the BCG luminosity and the overall X-ray luminosity and mass of the group. The observed cool-core/non-cool-core fractions for groups are comparable to those of clusters. However, notable differences are seen. For clusters, all SCCs have a central temperature drop, but for groups, this is not the case as some SCCs have centrally rising temperature profiles. While for the cluster sample, all SCC clusters have a central radio source as opposed to only 45% of the NCCs, for the group sample, all NCC groups have a central radio source as opposed to 77% of the SCC groups. For clusters, there are indications of an anticorrelation trend between radio luminosity and CCT which is absent for the groups. Indications of a trend of radio luminosity with black hole mass observed in SCC clusters is absent for groups. The strong correlation observed between the BCG luminosity and the cluster X-ray luminosity/cluster mass weakens significantly for groups. We conclude that there are important differences between clusters and groups within the ICM cooling/AGN feedback paradigm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا