ﻻ يوجد ملخص باللغة العربية
We present some results of numerical simulations of a globular cluster orbiting in the central region of a triaxial galaxy on a set of loop orbits. Tails start forming after about a quarter of the globular cluster orbital period and develop, in most cases, along the cluster orbit, showing clumpy substructures as observed, for example, in Palomar 5. If completely detectable, clumps can contain about 7,000 solar masses each, i.e. about 10% of the cluster mass at that epoch. The morphology of tails and clumps and the kinematical properties of stars in the tails are studied and compared with available observational data. Our finding is that the stellar velocity dispersion tends to level off at large radii, in agreement to that found for M15 and Omega Centauri.
In the last decade, observational studies have shown the existence of tidal streams in the outer part of many galactic globular clusters. The most striking examples of clusters with well defined tidal tails are represented by Palomar 5 and NGC 5466 (
Using the AAOmega instrument of the Anglo-Australian Telescope, we have obtained medium-resolution near-infrared spectra of 10,500 stars in two-degree fields centered on the galactic globular clusters 47 Tuc, NGC 288, M12, M30 and M55. Radial velocit
We report the detection of a pair of degree-long tidal tails associated with the globular cluster Palomar 14, using images obtained at the CFHT. We reveal a power-law departure from a King profile at large distances to the cluster center. The density
We use photometry from the DECam Legacy Survey to detect candidate tidal tails extending ~5 deg on either side of the Palomar 13 globular cluster. The tails are aligned with the proper motion of Palomar 13 and are consistent with its old, metal-poor
Based on recent findings of a formation mechanism of substructure in tidal tails by Kuepper, Macleod & Heggie (2008) we investigate a more comprehensive set of N-body models of star clusters on orbits about a Milky-Way-like potential. We find that th