ترغب بنشر مسار تعليمي؟ اضغط هنا

The double main sequence of Omega Centauri

83   0   0.0 ( 0 )
 نشر من قبل Luigi Rolly Bedin
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. R. Bedin




اسأل ChatGPT حول البحث

Recent, high precision photometry of Omega Centauri, the biggest Galactic globular cluster, has been obtained with Hubble Space Telescope. The color magnitude diagram reveals an unexpected bifurcation of colors in the main sequence (MS). The newly found double MS, the multiple turnoffs and subgiant branches, and other sequences discovered in the past along the red giant branch of this cluster add up to a fascinating but frustrating puzzle. Among the possible explanations for the blue main sequence an anomalous overabundance of helium is suggested. The hypothesis will be tested with a set of FLAMES@VLT data we have recently obtained (ESO DDT program), and with forthcoming ACS@HST images.



قيم البحث

اقرأ أيضاً

120 - A. Bellini 2013
We have applied our empirical-PSF-based photometric techniques on a large number of calibration-related WFC3/UVIS UV-B exposures of the core of {omega} Cen, and found a well-defined split in the right part of the white-dwarf cooling sequence (WDCS). The redder sequence is more populated by a factor of ~2. We can explain the separation of the two sequences and their number ratio in terms of the He-normal and He-rich subpopulations that had been previously identified along the cluster main sequence. The blue WDCS is populated by the evolved stars of the He-normal component (~0.55 Msun CO-core DA objects) while the red WDCS hosts the end-products of the He-rich population (~0.46 Msun objects, ~10% CO-core and ~90% He-core WDs). The He-core WDs correspond to He-rich stars that missed the central He-ignition, and we estimate their fraction by analyzing the population ratios along the cluster horizontal branch.
We present a spectral atlas of the post-main-sequence population of the most massive Galactic globular cluster, omega Centauri. Spectra were obtained of more than 1500 stars selected as uniformly as possible from across the (B, B-V) colour-magnitude diagram of the proper motion cluster member candidates of van Leeuwen et al. (2000). The spectra were obtained with the 2dF multi-fibre spectrograph at the Anglo Australian Telescope, and cover the approximate range lambda~3840-4940 Angstroem. We measure the radial velocities, effective temperatures, metallicities and surface gravities by fitting ATLAS9 stellar atmosphere models. We analyse the cluster membership and stellar kinematics, interstellar absorption in the Ca II K line at 3933 Angstroem, the RR Lyrae instability strip and the extreme horizontal branch, the metallicity spread and bimodal CN abundance distribution of red giants, nitrogen and s-process enrichment, carbon stars, pulsation-induced Balmer line emission on the asymptotic giant branch (AGB), and the nature of the post-AGB and UV-bright stars. Membership is confirmed for the vast majority of stars, and the radial velocities clearly show the rotation of the cluster core. We identify long-period RR Lyrae-type variables with low gravity, and low-amplitude variables coinciding with warm RR Lyrae stars. A barium enhancement in the coolest red giants indicates that 3rd dredge-up operates in AGB stars in omega Cen. This is distinguished from the pre-enrichment by more massive AGB stars, which is also seen in our data. The properties of the AGB, post-AGB and UV-bright stars suggest that RGB mass loss may be less efficient at very low metallicity, [Fe/H]<<-1, increasing the importance of mass loss on the AGB. The catalogue and spectra are made available via CDS.
We present deep and precise photometry (F435, F625W, F658N) of Omega Cen collected with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). We have identified ~ 6,500 white dwarf (WD) candidates, and the ratio of WD and M ain Sequence (MS) star counts is found to be at least a factor of two larger than the ratio of CO-core WD cooling and MS lifetimes. This discrepancy is not explained by the possible occurrence of a He-enhanced stellar population, since the MS lifetime changes by only 15% when changing from a canonical (Y=0.25) to a He-enhanced composition (Y=0.42). The presence of some He-core WDs seems able to explain the observed star counts. The fraction of He WDs required ranges from 10% to 80% depending on their mean mass and it is at least five times larger than for field WDs. The comparison in the Color Magnitude Diagram between theory and observations also supports the presence of He WDs. Empirical evidence indicates that He WDs have been detected in stellar systems hosting a large sample of extreme horizontal branch stars, thus suggesting that a fraction of red giants might avoid the He-core flash.
78 - G.C. Myeong 2018
We use the SDSS-Gaia catalogue to search for substructure in the stellar halo. The sample comprises 62,133 halo stars with full phase space coordinates and extends out to heliocentric distances of $sim 10$ kpc. As actions are conserved under slow cha nges of the potential, they permit identification of groups of stars with a common accretion history. We devise a method to identify halo substructures based on their clustering in action space, using metallicity as a secondary check. This is validated against smooth models and numerical constructed stellar halos from the Aquarius simulations. We identify 21 substructures in the SDSS-Gaia catalogue, including 7 high significance, high energy and retrograde ones. We investigate whether the retrograde substructures may be material stripped off the atypical globular cluster $omega$~Centauri. Using a simple model of the accretion of the progenitor of the $omega$~Centauri, we tentatively argue for the possible association of up to 5 of our new substructures (labelled Rg1, Rg3, Rg4, Rg6 and Rg7) with this event. This sets a minimum mass of $5 times 10^8 M_odot$ for the progenitor, so as to bring $omega$~Centauri to its current location in action -- energy space. Our proposal can be tested by high resolution spectroscopy of the candidates to look for the unusual abundance patterns possessed by $omega$~Centauri stars.
412 - R. Liseau , W. Vlemmings , A. Bayo 2014
The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevan t physical processes. Defining the permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. Earlier observations with Herschel and APEX have revealed the temperature minimum of alpha Cen, but these were unable to spatially resolve the binary into individual components. With the data reported here, we aim at remedying this shortcoming. Furthermore, these earlier data were limited to the wavelength region between 100 and 870mu. In the present context, we intend to extend the spectral mapping to longer wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident. ALMA is particularly suited to point sources, such as unresolved stars. ALMA provides the means to achieve our objectives with both its high sensitivity of the collecting area for the detection of weak signals and the high spatial resolving power of its adaptable interferometer for imaging close multiple stars. This is the first detection of main-sequence stars at a wavelength of 3mm. Furthermore, the individual components of the binary alpha CenAB are clearly detected and spatially well resolved at all ALMA wavelengths. The high S/N of these data permit accurate determination of their relative flux ratios. The previously obtained flux ratio of 0.44, which was based on measurements in the optical and at 70mu, is consistent with the present ALMA results, albeit with a large error bar. Given the distinct difference in their cyclic activity, the similarity of their submm SEDs appears surprising.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا