ترغب بنشر مسار تعليمي؟ اضغط هنا

Internal kinematics of spiral galaxies in distant clusters. Part II. Observations and data analysis

186   0   0.0 ( 0 )
 نشر من قبل Klaus Jaeger
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Jaeger




اسأل ChatGPT حول البحث

We have conducted an observing campaign with FORS at the ESO-VLT to explore the kinematical properties of spiral galaxies in distant galaxy clusters. Our main goal is to analyse transformation- and interaction processes of disk galaxies within the special environment of clusters as compared to the hierarchical evolution of galaxies in the field. Spatially resolved MOS-spectra have been obtained for seven galaxy clusters at 0.3<z<0.6 to measure rotation velocities of cluster members. For three of the clusters, Cl0303+17, Cl0413-65, and MS1008-12, for which we presented results including a TF-diagram in Ziegler et al. 2003, we describe here in detail the observations and data analysis. Each of them was observed with two setups of the standard FORS MOS-unit.With typical exposure times of >2 hours we reach an S/N>5 in the emission lines appropriate for the deduction of the galaxies internal rotation velocities from [OII], Hbeta, or [OIII] profiles. Preselection of targets was done on the basis of available redshifts as well as from photometric and morphological information gathered from own observations, archive data, and from the literature. Emphasis was laid on the definition of suitable setups to avoid the typical restrictions of the standard MOS unit for this kind of observations. In total we assembled spectra of 116 objects of which 50 turned out to be cluster members. Position velocity diagrams, finding charts as well as tables with photometric, spectral, and structural parameters of individual galaxies are presented.



قيم البحث

اقرأ أيضاً

88 - B. L. Ziegler 2003
We introduce our project on galaxy evolution in the environment of rich clusters aiming at disentangling the importance of specific interaction and galaxy transformation processes from the hierarchical evolution of galaxies in the field. Emphasis is laid on the examination of the internal kinematics of disk galaxies through spatially resolved MOS spectroscopy with FORS at the VLT. First results are presented for the clusters MS1008.1-1224 (z=0.30), Cl0303+1706 (z=0.42), and Cl0413-6559 (F1557.19TC) (z=0.51). Out of 30 cluster members with emission-lines, 13 galaxies exhibit a rotation curve of the universal form rising in the inner region and passing over into a flat part. The other members have either intrinsically peculiar kinematics (4), or too strong geometric distortions (9) or too low S/N (4 galaxies) for a reliable classification of their velocity profiles. The 13 cluster galaxies for which a maximum rotation velocity could be derived are distributed in the Tully--Fisher diagram very similar to field galaxies from the FORS Deep Field that have corresponding redshifts and do not show any significant luminosity evolution with respect to local samples. The same is true for seven galaxies observed in the cluster fields that turned out not to be members. The mass-to-light ratios of the 13 TF cluster spirals cover the same range as the distant field population indicating that their stellar populations were not dramatically changed by possible clusterspecific interaction phenomena. The cluster members with distorted kinematics may be subject to interaction processes but it is impossible to determine whether these processes also lead to changes in the overall luminosity of their stellar populations.
We present first results from our project to examine the internal kinematics of disk galaxies in 7 rich clusters with 0.3<=z<0.6. Spatially resolved MOS spectra have been obtained with FORS at the VLT. We concentrate here on the clusters MS1008.1-122 4 at z=0.30 and Cl0413-6559 (F1557.19TC) at z=0.51. Out of 22 cluster members, 12 galaxies exhibit a rotation curve of the universal form rising in the inner region and passing over into a flat part. The other members have intrinsically peculiar kinematics. The 12 cluster galaxies for which a maximum rotation velocity could be derived are distributed in the Tully-Fisher diagram very similar to field galaxies from the FORS Deep Field with corresponding redshifts. The same is true for 6 galaxies observed in the cluster fields that turned out not to be members. In particular, these cluster spirals do not show any significant luminosity evolution as might be expected from certain clusterspecific phenomena. Contrary to that, the other half of the cluster sample with disturbed kinematics also shows a higher degree of structural assymetries on average indicating ongoing or recent interaction processes.
302 - K. Jaeger 2004
We present our project on galaxy evolution in the environment of distant rich clusters aiming at disentangling the importance of specific interaction and galaxy transformation processes from the hierarchical evolution of field galaxies. Spatially res olved MOS spectra were gained with VLT/FORS to analyze the internal kinematics of disk galaxies. First results are shown for the clusters MS 1008.1-1224 (z=0.30), Cl 0303+1706 (z=0.42), and Cl 0413-6559 (z=0.51). Out of 35 late type cluster members, 13 galaxies exhibit a rotation curve of the universal form rising in the inner region and passing over into a flat part. The other members have peculiar kinematics. The 13 cluster galaxies for which a maximum rotation velocity could be derived are distributed in the Tully-Fisher diagram very similar to field galaxies from the FORS Deep Field with corresponding redshifts. The same is true for seven non-cluster galaxies observed in the cluster fields. The TF-cluster spirals do not show any significant luminosity evolution as might be expected from certain clusterspecific phenomena. Contrary to that, the disturbed kinematics of the non--TF cluster spirals indicate ongoing or recent interaction processes.
(Abridged) We trace the interaction processes of galaxies at intermediate redshift by measuring the irregularity of their ionized gas kinematics, and investigate these irregularities as a function of the environment (cluster versus field) and of morp hological type (spiral versus irregular). Our sample consists of 92 distant galaxies. 16 cluster (z~0.3 and z~0.5) and 29 field galaxies (mean z=0.44) of these have velocity fields with sufficient signal to be analyzed. We find that the fraction of galaxies that have irregular gas kinematics is remarkably similar in galaxy clusters and in the field at intermediate redshifts. The distribution of the field and cluster galaxies in (ir)regularity parameters space is also similar. On the other hand galaxies with small central concentration of light, that we see in the field sample, are absent in the cluster sample. We find that field galaxies at intermediate redshifts have more irregular velocity fields as well as more clumpy and less centrally concentrated light distributions than their local counterparts. Comparison with a SINS sample of 11 z ~ 2 galaxies shows that these distant galaxies have more irregular gas kinematics than our intermediate redshift cluster and field sample. We do not find a dependence of the irregularities in gas kinematics on morphological type. We find that two different indicators of star formation correlate with irregularity in the gas kinematics. More irregular gas kinematics, also more clumpy and less centrally concentrated light distributions of spiral field galaxies at intermediate redshifts in comparison to their local counterparts indicate that these galaxies are probably still in the process of building their disks via mechanisms such as accretion and mergers. On the other hand, they have less irregular gas kinematics compared to galaxies at z ~ 2.
(Abridged) We study the impact of cluster environment on the evolution of spiral galaxies by examining their structure and kinematics. Rather than two-dimensional rotation curves, we observe complete velocity fields by placing three adjacent and para llel FORS2 MXU slits on each object, yielding several emission and absorption lines. The gas velocity fields are reconstructed and decomposed into circular rotation and irregular motions using kinemetry. To quantify irregularities in the gas kinematics, we define three parameters: sigma_{PA} (standard deviation of the kinematic position angle), Delta phi (the average misalignment between kinematic and photometric position angles) and k_{3,5} (squared sum of the higher order Fourier terms). Using local, undistorted galaxies from SINGS, these can be used to establish the regularity of the gas velocity fields. Here we present the analysis of 22 distant galaxies in the MS0451.6-0305 field with 11 members at z=0.54. In this sample we find both field (4 out of 8) and cluster (3 out of 4) galaxies with velocity fields that are both irregular and asymmetric. We show that these fractions are underestimates of the actual number of galaxies with irregular velocity fields. The values of the (ir)regularity parameters for cluster galaxies are not very different from those of the field galaxies, implying that there are isolated field galaxies that are as distorted as the cluster members. None of the deviations in our small sample correlate with photometric/structural properties like luminosity or disk scale length in a significant way. Our 3D-spectroscopic method successfully maps the velocity field of distant galaxies, enabling the importance and efficiency of cluster specific interactions to be assessed quantitatively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا