ترغب بنشر مسار تعليمي؟ اضغط هنا

The unfriendly ISM in the radio galaxy 4C12.50 (PKS 1345+12)

243   0   0.0 ( 0 )
 نشر من قبل Raffaella Morganti
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Morganti




اسأل ChatGPT حول البحث

The radio source 4C12.50 has often been suggested to be a prime candidate for the link between ultraluminous infrared galaxies and young radio galaxies. A VLBI study of the neutral hydrogen in the nuclear regions of this object shows that most of the gas detected close to the systemic velocity is associated with an off-nuclear cloud (~50 to 100 pc from the radio core) with a column density of ~10^22 T_spin/100 K) cm^(-2) and an HI mass of a few times 10^5 to 10^6 M_sun. We consider a number of possibilities to explain the results. In particular, we discus the possibility that this cloud indicates the presence of a rich and clumpy interstellar medium in the centre, likely left over from the merger that triggered the activity and that this medium influences the growth of the radio source. The location of the cloud -- at the edge of the northern radio jet/lobe -- suggests that the radio jet might be interacting with a gas cloud. This interaction could be responsible for bending the young radio jet. The velocity profile of the gas is relatively broad (~150$ km/s) and we interpret this as kinematical evidence for interaction of the radio plasma with the cloud. We also consider the model where the cloud is part of a broader circumnuclear structure. Only a limited region of this structure would have sufficient background radio brightness and large enough column depth in neutral gas to obtain detectable HI absorption against the counterjet. The VLBI study of the neutral hydrogen in 4C12.50 suggests that HI detected near the systemic velocity (as it is often the case in radio galaxies) may not necessarily be connected with a circumnuclear disk or torus (as is very often assumed) but instead could be a tracer of the large-scale medium that surrounds the active nucleus and that may influence the growth of the young radio source.


قيم البحث

اقرأ أيضاً

252 - J. Holt , R. Morganti (3 2010
(Abridged) We present new deep VLT/FORS optical spectra with intermediate resolution and large wavelength coverage of the GPS radio source and ULIRG PKS1345+12 (4C12.50; z=0.122), taken with the aim of investigating the impact of the nuclear activity on the circumnuclear ISM. PKS1345+12 is a powerful quasar and is also the best studied case of an emission line outflow in a ULIRG. Using the density sensitive transauroral emission lines [S II]4068,4076 and [O II]7318,7319,7330,7331, we pilot a new technique to accurately model the electron density for cases in which it is not possible to use the traditional diagnostic [S II]6716/6731, namely sources with highly broadened complex emission line profiles and/or high (Ne > 10^4 cm^-3) electron densities. We measure electron densities of Ne=2.94x10^3 cm^-3, Ne=1.47x10^4 cm^-3 and Ne=3.16x10^5 cm^-3 for the regions emitting the narrow, broad and very broad components respectively. We calculate a total mass outflow rate of 8 M_sun yr^-1. We estimate the total mass in the warm gas outflow is 8x10^5 M_sun. The total kinetic power in the warm outflow is 3.4x10^42 erg s^-1. We find that only a small fraction (0.13% of Lbol) of the available accretion power is driving the warm outflow, significantly less than currently required by the majority of quasar feedback models (~5-10% of Lbol), but similar to recent findings by Hopkins et al. (2010) for a two-stage feedback model. The models also predict that AGN outflows will eventually remove the gas from the bulge of the host galaxy. The visible warm outflow in PKS1345+12 is not currently capable of doing so. However, it is entirely possible that much of the outflow is either obscured by a dense and dusty natal cocoon and/or in cooler or hotter phases of the ISM. This result is important not just for studies of young (GPS/CSS) radio sources, but for AGN in general.
231 - Bjorn Emonts 2016
Powerful radio galaxies are often associated with gas-rich galaxy mergers. These mergers may provide the fuel to trigger starburst and active galactic nuclear (AGN) activity. In this Research Note, we study the host galaxies of three seemingly young or re-started radio sources that drive fast outflows of cool neutral hydrogen (HI) gas, namely 3C 293, 3C 305 and 4C 12.50 (PKS 1345+12). Our aim is to link the feedback processes in the central kpc-scale region with new information on the distribution of stars and gas at scales of the galaxy. For this, we use deep optical V-band imaging of the host galaxies, complemented with HI emission-line observations to study their gaseous environments. We find prominent optical tidal features in all three radio galaxies, which confirm previous claims that 3C 293, 3C 305 and 4C 12.50 have been involved in a recent galaxy merger or interaction. Our data show the complex morphology of the host galaxies, and identify the companion galaxies that are likely involved in the merger or interaction. The radio sources appear to be (re-)triggered at a different stage of the merger; 4C 12.50 is a pre-coalescent and possibly multiple merger, 3C 293 is a post-coalescent merger that is undergoing a minor interaction with a close satellite galaxy, while 3C 305 appears to be shaped by an interaction with a gas-rich companion. For 3C 293 and 3C 305, we do not detect HI beyond the inner ~30-45 kpc region, which shows that the bulk of the cold gas is concentrated within the host-galaxy, rather than along the widespread tidal features.
68 - J. W. Broderick 2006
We present the results of a radio polarimetric study of the high-redshift radio galaxy PKS B0529-549 (z=2.575), based on high-resolution 12 mm and 3 cm images obtained with the Australia Telescope Compact Array (ATCA). The source is found to have a r est-frame Faraday rotation measure of -9600 rad m^{-2}, the largest seen thus far in the environment of a z > 2 radio galaxy. In addition, the rest-frame Faraday dispersion in the screen responsible for the rotation is calculated to be 5800 rad m^{-2}, implying rotation measures as large as -15400 rad m^{-2}. Using supporting near-IR imaging from the Very Large Telescope (VLT), we suggest that the rotation measure originates in the Ly-alpha halo surrounding the host galaxy, and estimate the magnetic field strength to be ~10 microGauss. We also present a new optical spectrum of PKS B0529-549 obtained with the New Technology Telescope (NTT), and propose that the emission-line ratios are best described by a photoionization model. Furthermore, the host galaxy is found to exhibit both hot dust emission at 8.0 microns and significant internal visual extinction (~1.6 mag), as inferred from Spitzer Space Telescope near/mid-IR imaging.
We present MeerKAT 1.28 GHz total-intensity, polarization, and spectral-index images covering the giant (projected length $l approx 1.57$~Mpc) X-shaped radio source PKS~2014$-$55 with an unprecedented combination of brightness sensitivity and angular resolution. They show the clear double boomerang morphology of hydrodynamical backflows from the straight main jets deflected by the large and oblique hot-gas halo of the host galaxy PGC~064440. The magnetic field orientation in PKS~2014$-$55 follows the flow lines from the jets through the secondary wings. The radio source is embedded in faint ($T_mathrm{b} approx 0.5 mathrm{,K}$) cocoons having the uniform brightness temperature and sharp outer edges characteristic of subsonic expansion into the ambient intra-group medium. The position angle of the much smaller ($l sim 25$~kpc) restarted central source is within $5^circ$ of the main jets, ruling out models that invoke jet re-orientation or two independent jets. Compression and turbulence in the backflows probably produce the irregular and low polarization bright region behind the apex of each boomerang as well as several features in the flow with bright heads and dark tails.
93 - N. Seymour 2020
We present a detailed analysis of the radio galaxy PKS 2250-351, a giant of 1.2 Mpc projected size, its host galaxy, and its environment. We use radio data from the Murchison Widefield Array, the upgraded Giant Metre-wavelength Radio Telescope, the A ustralian Square Kilometre Array Pathfinder, and the Australia Telescope Compact Array to model the jet power and age. Optical and infra-red data come from the Galaxy And Mass Assembly (GAMA) survey and provide information on the host galaxy and environment. GAMA spectroscopy confirms that PKS 2250-351 lies at z=0.2115 in the irregular, and likely unrelaxed, cluster Abell 3936. We find its host is a massive, `red and dead elliptical galaxy with negligible star formation but with a highly obscured active galactic nucleus dominating the mid-infrared emission. Assuming it lies on the local M-sigma relation it has an Eddington accretion rate of lambda_EDD~0.014. We find that the lobe-derived jet power (a time-averaged measure) is an order of magnitude greater than the hotspot-derived jet power (an instantaneous measure). We propose that over the lifetime of the observed radio emission (~300 Myr) the accretion has switched from an inefficient advection dominated mode to a thin-disc efficient mode, consistent with the decrease in jet power. We also suggest that the asymmetric radio morphology is due to its environment, with the host of PKS 2250-351 lying to the west of the densest concentration of galaxies in Abell 3936.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا