ﻻ يوجد ملخص باللغة العربية
Most old distant radio galaxies should be extended X-ray sources due to inverse Compton scattering of Cosmic Microwave Background (CMB) photons. Such sources can be an important component in X-ray surveys for high redshift clusters, due to the increase with redshift of both the CMB energy density and the radio source number density. We estimate a lower limit to the space density of such sources and show that inverse Compton scattered emission may dominate above redshifts of one and X-ray luminosities of 10^44 erg/s, with a space density of radio galaxies > 10^-8 Mpc^-3. The X-ray sources may last longer than the radio emission and so need not be associated with what is seen to be a currently active radio galaxy.
We present a systematic analysis of the extended X-ray emission discovered around 35 FR II radio galaxies from the revised Third Cambridge catalog (3CR) Chandra Snapshot Survey with redshifts between 0.05 to 0.9. We aimed to (i) test for the presen
We analyze Chandra observations of diffuse soft X-ray emission associated with a complete sample of 3CR radio galaxies at z < 0.3. In this paper we focus on the properties of the spectroscopic sub-classes of high excitation galaxies (HEGs) and broad
Clusters of galaxies at high redshift (z>1) are vitally important to understand the evolution of the large scale structure of the Universe, the processes shaping galaxy populations and the cycle of the cosmic baryons, and to constrain cosmological pa
The most spectacular aspect of cluster radio emission is represented by the large-scale diffuse radio sources, which cannot be obviously associated with any individual galaxy. These sources demonstrate the existence of relativistic particles and magn
This paper studied the faint, diffuse extended X-ray emission associated with the radio lobes and the hot gas in the intracluster medium (ICM) environment for a sample of radio galaxies. We used shallow ($sim 10$ ks) archival Chandra observations for