ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometry and the Metallicity Distribution of the Outer Halo of M31. II. The 30 Kpc Field

54   0   0.0 ( 0 )
 نشر من قبل Patrick Durrell
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a wide-field (V,I) photometric study of the red-giant branch (RGB) stars in the outer halo of M31, in a field located 30 to 35 kpc from the center of the galaxy along the southeast minor axis. At this remote location, we find that RGB stars belonging to M31 are sparsely but definitely present, after statistical subtraction of field contamination. We derive the metallicity distribution (MDF) for the halo stars using interpolation within a standard (I,V-I) grid of RGB evolutionary tracks. The halo MDF is quite broad but dominated by a moderately high-metallicity population peaking at [m/H] ~ -0.5, strikingly different from the [m/H] ~ -1.3 level which characterizes the outer halo of the Milky Way. However,the shape and peak metallicity for this region are entirely similar to those found in other studies for the inner regions of the M31 halo, particularly our previous study of a 20-kpc region (Durrell, Harris, & Pritchet 2001) employing similar data. In summary, we find no evidence for a metallicity gradient or systematic change in the MDF out to quite large distances in the M31 halo: it appears to be a homogeneous and moderately metal-rich subsystem of the galaxy at all locations. The star counts in the 30-kpc field are also consistent with the r^1/4 law that fits the interior regions of the M31 spheroid surface brightness profile. The metal-rich MDF and the r^1/4 spheroid suggests M31 more strongly resembles a giant elliptical galaxy than other, Milky-Way-like, spirals.



قيم البحث

اقرأ أيضاً

We have conducted a wide-field CCD-mosaic study of the resolved red-giant branch (RGB) stars of M31, in a field located 20 kpc from the nucleus along the SE minor axis. In our (I, V-I) color-magnitude diagram, RGB stars in the top three magnitudes of the M31 halo are strongly present. Photometry of a more distant control field to subtract field contamination is used to derive the `cleaned luminosity function and metallicity distribution function (MDF) of the M31 halo field. From the color distribution of the foreground Milky Way halo stars, we find a reddening E(V-I)= 0.10 +/- 0.02 for this field, and from the luminosity of the RGB tip, we determine a distance modulus (m-M)_o = 24.47 +/- 0.12 (= 783 +/- 43 kpc). The MDF is derived from interpolation within an extensive new grid of RGB models (Vandenberg et al. 2000). The MDF is dominated by a moderately high-metallicity population ([m/H]~ -0.5) found previously in more interior M31 halo/bulge fields, and is much more metal-rich than the [m/H]~ -1.5 level in the Milky Way halo. A significant (~30% - 40%, depending on AGB star contribution) metal-poor population is also present. To first order, the shape of the MDF resembles that predicted by a simple, single-component model of chemical evolution starting from primordial gas with an effective yield y=0.0055. It strongly resembles the MDF recently found for the outer halo of the giant elliptical NGC 5128 (Harris et al. 2000), though NGC 5128 has an even lower fraction of low-metallicity stars. Intriguingly, in both NGC 5128 and M31, the metallicity distribution of the globular clusters in M31 does not match the halo stars; the clusters are far more heavily weighted to metal-poor objects. We suggest similarities in the formation and early evolution of massive, spheroidal stellar systems.
We present a detailed kinematic analysis of the outer halo globular cluster (GC) system of M31. Our basis for this is a set of new spectroscopic observations for 78 clusters lying at projected distances between Rproj ~20-140 kpc from the M31 centre. These are largely drawn from the recent PAndAS globular cluster catalogue; 63 of our targets have no previous velocity data. Via a Bayesian maximum likelihood analysis we find that GCs with Rproj > 30 kpc exhibit coherent rotation around the minor optical axis of M31, in the same direction as more centrally- located GCs, but with a smaller amplitude of 86+/-17 km s-1. There is also evidence that the velocity dispersion of the outer halo GC system decreases as a function of projected distance from the M31 centre, and that this relation can be well described by a power law of index ~ -0.5. The velocity dispersion profile of the outer halo GCs is quite similar to that of the halo stars, at least out to the radius up to which there is available information on the stellar kinematics. We detect and discuss various velocity correlations amongst subgroups of GCs that lie on stellar debris streams in the M31 halo. Many of these subgroups are dynamically cold, exhibiting internal velocity dispersions consistent with zero. Simple Monte Carlo experiments imply that such configurations are unlikely to form by chance, adding weight to the notion that a significant fraction of the outer halo GCs in M31 have been accreted alongside their parent dwarf galaxies. We also estimate the M31 mass within 200 kpc via the Tracer Mass Estimator, finding (1.2 - 1.6) +/- 0.2 10^{12}M_sun. This quantity is subject to additional systematic effects due to various limitations of the data, and assumptions built in into the TME. Finally, we discuss our results in the context of formation scenarios for the M31 halo.
66 - A.D. Mackey 2006
We report the first results from deep ACS imaging of ten classical globular clusters in the far outer regions (15 < R_p < 100 kpc) of M31. Eight of the clusters, including two of the most remote M31 globular clusters presently known, are described fo r the first time. Our F606W, F814W colour-magnitude diagrams extend ~ 3 magnitudes below the horizontal branch and clearly demonstrate that the majority of these objects are old (> 10 Gyr), metal-poor clusters. Five have [Fe/H] ~ -2.1, while an additional four have -1.9 < [Fe/H] < -1.5. The remaining object is more metal-rich, with [Fe/H] ~ -0.70. Several clusters exhibit the second parameter effect. Using aperture photometry, we estimate integrated luminosities and structural parameters for all clusters. Many, including all four clusters with projected radii greater than 45 kpc, are compact and very luminous, with -8.9 < M_V < -8.3. These four outermost clusters are thus quite unlike their Milky Way counterparts, which are typically diffuse, sub-luminous (-6.0 < M_V < -4.7) and more metal-rich (-1.8 < [Fe/H] < -1.3).
We present Keck/HIRES spectra of 3 globular clusters in the outer halo of M31, at projected distances beyond ~80 kpc from M31. The measured recession velocities for all 3 globular clusters confirm their association with the globular cluster system of M31. We find evidence for a declining velocity dispersion with radius for the globular cluster system. Their measured internal velocity dispersions, derived virial masses and mass-to-light ratios are consistent with those for the bulk of the M31 globular cluster system. We derive old ages and metallicities which indicate that all 3 belong to the metal-poor halo globular cluster subpopulation. We find indications that the radial gradient of the mean metallicity of the globular cluster system interior to 50 kpc flattens in the outer regions, however it is still more metal-poor than the corresponding field stars at the same (projected) radius.
We report the discovery of 40 new globular clusters (GCs) that have been found in surveys of the halo of M31 based on INT/WFC and CHFT/Megacam imagery. A subset of these these new GCs are of an extended, diffuse nature, and include those already foun d in Huxor et al. (2005). The search strategy is described and basic positional and V and I photometric data are presented for each cluster. For a subset of these clusters, K-band photometry is also given. The new clusters continue to be found to the limit of the survey area (~100 kpc), revealing that the GC system of M31 is much more extended than previously realised. The new clusters increase the total number of confirmed GCs in M31 by approximately 10% and the number of confirmed GCs beyond 1 degree (~14 kpc) by more than 75%. We have also used the survey imagery as well recent HST archival data to update the Revised Bologna Catalogue (RBC) of M31 globular clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا