ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for H-alpha Absorption in the Exosphere of the Transiting Extrasolar Planet HD 209458b

82   0   0.0 ( 0 )
 نشر من قبل Joshua N. Winn
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is evidence that the transiting planet HD 209458b has a large exosphere of neutral hydrogen, based on a 15% decrement in Lyman-alpha flux that was observed by Vidal-Madjar et al. during transits. Here we report upper limits on H-alpha absorption by the exosphere. The results are based on optical spectra of the parent star obtained with the Subaru High Dispersion Spectrograph. Comparison of the spectra taken inside and outside of transit reveals no exospheric H-alpha signal greater than 0.1% within a 5.1A band (chosen to have the same Delta_lambda/lambda as the 15% Ly-alpha absorption). The corresponding limit on the column density of n=2 neutral hydrogen is N_2 <~ 10^9 cm^{-2}. This limit constrains proposed models involving a hot (~10^4 K) and hydrodynamically escaping exosphere.



قيم البحث

اقرأ أيضاً

We derive improved system parameters for the HD 209458 system using a model that simultaneously fits both photometric transit and radial velocity observations. The photometry consists of previous Hubble Space Telescope STIS and FGS observations, twel ve I-band transits observed between 2001-2003 with the Mt. Laguna Observatory 1m telescope, and six Stromgren b+y transits observed between 2001-2004 with two of the Automatic Photometric Telescopes at Fairborn Observatory. The radial velocities were derived from Keck/HIRES observations. The model properly treats the orbital dynamics of the system, and thus yields robust and physically self-consistent solutions. Our set of system parameters agrees with previously published results though with improved accuracy. For example, applying robust limits on the stellar mass of 0.93-1.20Msun, we find 1.26 < Rplanet < 1.42 Rjup and 0.59 < Mplanet < 0.70 Mjup. We can reduce the uncertainty on these estimates by including a stellar mass-radius relation constraint, yielding Rplanet = 1.35 +/- 0.07 Rjup and Mplanet = 0.66 +/- 0.04 Mjup. Our results verify that the planetary radius is 10-20% larger than predicted by planet evolution models, confirming the need for an additional mechanism to slow the evolutionary contraction of the planet. A revised ephemeris is derived, T0=2452854.82545 + 3.52474554E (HJD), which now contains an uncertainty in the period of 0.016s and should facilitate future searches for planetary satellites and other bodies in the HD 209458 system.
We present a new technique for detecting scattered starlight from transiting, close-orbiting extrasolar giant planets (CEGPs) that has the virtues of simplicity, robustness, linearity, and model-independence. Given a series of stellar spectra obtaine d over various phases of the planetary orbit, the goal is to measure the strength of the component scattered by the planet relative to the component coming directly from the star. We use two complementary strategies, both of which rely on the predictable Doppler shifts of both components and on combining the results from many spectral lines and many exposures. In the first strategy, we identify segments of the stellar spectrum that are free of direct absorption lines and add them after Doppler-shifting into the planetary frame. In the second strategy, we compare the distribution of equivalent-width ratios of the scattered and direct components. Both strategies are calibrated with a ``null test in which scrambled Doppler shifts are applied to the spectral segments. As an illustrative test case, we apply our technique to spectra of HD 209458 taken when the planet was near opposition (with orbital phases ranging from 11 to 34$arcdeg$, where 0$arcdeg$ is at opposition), finding that the planet-to-star flux ratio is $(1.4 pm 2.9)times10^{-4}$ in the wavelength range 554$-$681 nm. This corresponds to a geometric albedo of $0.8 pm 1.6$, assuming the phase function of a Lambert sphere. Although the result is not statistically significant, the achieved sensitivity and relatively small volume of data upon which it is based are very encouraging for future ground-based spectroscopic studies of scattered light from transiting CEGP systems.
We show that the very close-by (19 pc) K0 star HD 189733, already found to be orbited by a transiting giant planet, is the primary of a double-star system, with the secondary being a mid-M dwarf with projected separation of about 216 AU from the prim ary. This conclusion is based on astrometry, proper motion and radial velocity measurements, spectral type determination and photometry. We also detect differential proper motion of the secondary. The data appear consistent with the secondary orbiting the primary in a clockwise orbit, lying nearly in the plane of the sky (that is, nearly perpendicular to the orbital plane of the transiting planet), and with period about 3200 years.
We report the spectroscopic detection of mid-infrared emission from the transiting exoplanet HD 209458b. Using archive data taken with the Spitzer/IRS instrument, we have determined the spectrum of HD 209458b between 7.46 and 15.25 microns. We have u sed two independent methods to determine the planet spectrum, one differential in wavelength and one absolute, and find the results are in good agreement. Over much of this spectral range, the planet spectrum is consistent with featureless thermal emission. Between 7.5 and 8.5 microns, we find evidence for an unidentified spectral feature. If this spectral modulation is due to absorption, it implies that the dayside vertical temperature profile of the planetary atmosphere is not entirely isothermal. Using the IRS data, we have determined the broad-band eclipse depth to be 0.00315 +/- 0.000315, implying significant redistribution of heat from the dayside to the nightside. This work required development of improved methods for Spitzer/IRS data calibration that increase the achievable absolute calibration precision and dynamic range for observations of bright point sources.
We have entered the phase of extrasolar planets characterization, probing their atmospheres for molecules, constraining their horizontal and vertical temperature profiles and estimating the contribution of clouds and hazes. We report here a short rev iew of the current situation using ground based and space based observations, and present the transmission spectra of HD189733b in the spectral range 0.5-24 microns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا