ترغب بنشر مسار تعليمي؟ اضغط هنا

13 Years of Timing of PSR B1259-63

91   0   0.0 ( 0 )
 نشر من قبل Na Wang
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Wang




اسأل ChatGPT حول البحث

This paper summarizes the results of 13 years of timing observations of a unique binary pulsar, PSR B1259$-$63, which has a massive B2e star companion. The data span encompasses four complete orbits and includes the periastron passages in 1990, 1994, 1997 and 2000. Changes in dispersion measure occurring around the 1994, 1997 and 2000 periastrons are measured and accounted for in the timing analysis. There is good evidence for a small glitch in the pulsar period in 1997 August, not long after the 1997 periastron, and a significant frequency second derivative indicating timing noise. We find that spin-orbit coupling with secular changes in periastron longitude and projected semi-major axis ($x$) cannot account for the observed period variations over the whole data set. While fitting the data fairly well, changes in pulsar period parameters at each periastron seem ruled out both by X-ray observations and by the large apparent changes in pulsar frequency derivative. Essentially all of the systematic period variations are accounted for by a model consisting of the 1997 August glitch and step changes in $x$ at each periastron. These changes must be due to changes in the orbit inclination, but we can find no plausible mechanism to account for them. It is possible that timing noise may mask the actual changes in orbital parameters at each periastron, but the good fit to the data of the $x$ step-change model suggests that short-term timing noise is not significant.



قيم البحث

اقرأ أيضاً

138 - G. Dubus , B. Cerutti 2013
PSR B1259-63 is a gamma-ray binary system composed of a high spindown pulsar and a massive star. Non-thermal emission up to TeV energies is observed near periastron passage, attributed to emission from high energy e+e- pairs accelerated at the shock with the circumstellar material from the companion star, resulting in a small-scale pulsar wind nebula. Weak gamma-ray emission was detected by the Fermi/LAT at the last periastron passage, unexpectedly followed 30 days later by a strong flare, limited to the GeV band, during which the luminosity nearly reached the spindown power of the pulsar. The origin of this GeV flare remains mysterious. We investigate whether the flare could have been caused by pairs, located in the vicinity of the pulsar, up-scattering X-ray photons from the surrounding pulsar wind nebula rather than UV stellar photons, as usually assumed. Such a model is suggested by the geometry of the interaction region at the time of the flare. We compute the gamma-ray lightcurve for this scenario, based on a simplified description of the interaction region, and compare it to the observations. The GeV lightcurve peaks well after periastron with this geometry. The pairs are inferred to have a Lorentz factor ~500. They also produce an MeV flare with a luminosity ~1e34 erg/s prior to periastron passage. A significant drawback is the very high energy density of target photons required for efficient GeV emission. We propose to associate the GeV-emitting pairs with the Maxwellian expected at shock locations corresponding to high pulsar latitudes, while the rest of the non-thermal emission arises from pairs accelerated in the equatorial region of the pulsar wind termination shock.
The pulsar/massive star binary system PSR B1259-63 / LS 2883 is one of the best-studied gamma-ray binaries, a class of systems whose bright gamma-ray flaring can provide important insights into high-energy physics. Using the Australian Long Baseline Array we have conducted very long baseline interferometric observations of PSR B1259-63 over 4.4 years, fully sampling the 3.4-year orbital period. From our measured parallax of $0.38pm0.05$ mas we use a Bayesian approach to infer a distance of $2.6^{+0.4}_{-0.3}$ kpc. We find that the binary orbit is viewed at an angle of $154pm3$ degrees to the line of sight, implying that the pulsar moves clockwise around its orbit as viewed on the sky. Taking our findings together with previous results from pulsar timing observations, all seven orbital elements for the system are now fully determined. We use our measurement of the inclination angle to constrain the mass of the stellar companion to lie in the range 15-31$M_{odot}$. Our measured distance and proper motion are consistent with the system having originated in the Cen OB1 association and receiving a modest natal kick, causing it to have moved $sim$8 pc from its birthplace over the past $sim3times10^5$ years. The orientation of the orbit on the plane of the sky matches the direction of motion of the X-ray synchrotron-emitting knot observed by the Chandra X-ray Observatory to be moving away from the system.
GeV flares from PSR B1259-63/LS 2883 were seen starting around 30 days after the two periastron passages in 2010 and 2014. The flares are clearly delayed compared to the occurrence of the X-ray and TeV flux peaks during the post-periastron disk cross ing. While several attempts have been put forward to explain this phenomenon, the origin of these GeV flares remains a puzzle. Here we present a detailed analysis of the observational data taken by the Fermi and Swift observatories over the 2017 September periastron passage. For the first time, we find short-lived but powerful GeV flares on time scales of down to three hours. The onset of the GeV flaring period in 2017 is also delayed compared to those seen in 2011 and 2014. Supplemented by a re-analysis of previous data, we compare the Fermi/LAT, Swift/XRT and Swift/UVOT light curves in 2017 with those taken over the 2010 and 2014 periastrons, and difference in UVOT light curves are noted.
130 - Shu-Xu Yi , K.S. Cheng 2017
PSR B1259-63/LS2883 is a binary system composed of a pulsar and a Be star. The Be star has an equatorial circumstellar disk (CD). The {it Fermi} satellite discovered unexpected gamma-ray flares around 30 days after the last two periastron passages. T he origin of the flares remain puzzling. In this work, we explore the possibility that, the GeV flares are consequences of inverse Compton-scattering of soft photons by the pulsar wind. The soft photons are from an accretion disk around the pulsar, which is composed by the matter from CD captured by the pulsars gravity at disk-crossing before the periastron. At the other disk-crossing after the periastron, the density of the CD is not high enough so that accretion is prevented by the pulsar wind shock. This model can reproduce the observed SEDs and light curves satisfactorily.
We examine changes of the $gamma$-ray intensity observed from the direction of the binary system PSR B1259-63/LS 2883 during campaigns around its three periastron passages. A simple and straightforward method is applied to the published data obtained with the Imaging Atmospheric Cherenkov Technique. Regardless of many issues of the detection process, the method works only with numbers of very high energetic photons registered in the specified regions. Within the realm of this scheme, we recognized changes attributable to the variations of the intrinsic source activity at high levels of significance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا