ترغب بنشر مسار تعليمي؟ اضغط هنا

The HCO+ emission excess in bipolar outflows

52   0   0.0 ( 0 )
 نشر من قبل Matt Redman
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.M.C Rawlings




اسأل ChatGPT حول البحث

A plausible model is proposed for the enhancement of the abundance of molecular species in bipolar outflow sources. In this model, levels of HCO+ enhancement are considered based on previous chemical calculations, that are assumed to result from shock-induced desorption and photoprocessing of dust grain ice mantles in the boundary layer between the outflow jet and the surrounding envelope. A radiative transfer simulation that incorporates chemical variations within the flow shows that the proposed abundance enhancements in the boundary layer are capable of reproducing the observed characteristics of the outflow seen in HCO+ emission in the star forming core L1527. The radiative transfer simulation also shows that the emission lines from the enhanced molecular species that trace the boundary layer of the outflow exhibit complex line profiles indicating that detailed spatial maps of the line profiles are essential in any attempt to identify the kinematics of potential infall/outflow sources. This study is one of the first applications of a full three dimensional radiative transfer code which incorporates chemical variations within the source.

قيم البحث

اقرأ أيضاً

Bipolar outflows constitute some of the best laboratories to study shock chemistry in the interstellar medium. A number of molecular species have their abundance enhanced by several orders of magnitude in the outflow gas, likely as a combined result of dust mantle disruption and high temperature gas chemistry, and therefore become sensitive indicators of the physical changes taking place in the shock. Identifying these species and understanding their chemical behavior is therefore of high interest both to chemical studies and to our understanding of the star-formation process. Here we review some of the recent progress in the study of the molecular composition of bipolar outflows, with emphasis in the tracers most relevant for shock chemistry. As we discuss, there has been rapid progress both in characterizing the molecular composition of certain outflows as well as in modeling the chemical processes likely involved. However, a number of limitations still affect our understanding of outflow chemistry. These include a very limited statistical approach in the observations and a dependence of the models on plane-parallel shocks, which cannot reproduce the observed wing morphology of the lines. We finish our contribution by discussing the chemistry of the so-called extremely high velocity component, which seems different from the rest of the outflow and may originate in the wind from the very vicinity of the protostar.
High spatial resolution images of PNe have shown their extremely complex morphology. However, the circumstellar envelopes of their progenitors, the AGB stars, are strikingly spherical. In order to understand the carving processes leading to axisymmet ric nebulae, we are carrying out a study of a large sample of pre-PNe. Our emission model of the nebular molecular gas (12CO & 13CO) will allow us to determine important physical parameters (mass, linear momentum, kinetic energy) of the fast bipolar and slow spherical nebular components separately. We will study in an innovative way the properties for each source individually, and put our results in an evolutionary context with the help of the data obtained by us and collected from the literature.
We model molecular outflows produced by the time dependent interaction between a stellar wind and a rotating cloud envelope in gravitational collapse, studied by Ulrich. We consider spherical and anisotropic stellar winds. We assume that the bipolar outflow is a thin shocked shell, with axial symmetry around the cloud rotation axis and obtain the mass and momentum fluxes into the shell. We solve numerically a set of partial differential equations in space and time, and obtain the shape of the shell, the mass surface density, the velocity field, and the angular momentum of the material in the shell. We find that there is a critical value of the ratio between the wind and the accretion flow momentum rates $beta$ that allows the shell to expand. As expected, the elongation of the shells increase with the stellar wind anisotropy. In our models, the rotation velocity of the shell is the order to 0.1 - 0.2 km s$^{-1}$, a factor of 5-10 lower than the values measured in several sources. We compare our models with those of Wilkin and Stahler for early evolutionary times and find that our shells have the same sizes at the pole, although we use different boundary conditions at the equator.
We report observations made with the IRAM 30m radiotelescope in the HCN(1-0) and HCO+(1-0) lines towards a sample of molecular complexes (GMCs) in the disk of the Andromeda galaxy (M31). The targets were identified bright CO GMCs selected from the IR AM 30m CO survey with various morphologies and environments. The clouds vary in galactocentric distances from 2.4 to 15.5kpc. The HCN and HCO+ emission is easily detected in almost all observed positions, with line widths generally similar to the CO ones and there is a good correlation between the two dense gas tracers. The HCO+ emission is slightly stronger than the HCN, in particular towards GMCs with a strong star formation activity. However the HCO+ emission is weaker than the HCN towards a quiescent cloud in the inner part of M31, which could be due to a lower abundance of HCO+. We derive I_HCN/I_CO ratios between 0.008 and 0.03 and I_HCO+/I_CO ratios between less than 0.003 and 0.04. We study the radial distribution of the dense gas in the disk of M31. Unlike our Galaxy the HCO+/CO ratio is lower in the center of M31 than in the arms, which can be explained by both a lower abundance of HCO+ and different conditions of excitation. Furthermore the HCN/CO and HCO+/CO ratios appear to be higher in the inner spiral arm and weaker in the outer arm.
We report ~2 resolution Atacama Large Millimeter/submillimeter Array observations of the HCN(1-0), HCO+(1-0), CO(1-0), CO(2-1), and CO(3-2) lines towards the nearby merging double-nucleus galaxy NGC 3256. We find that the high density gas outflow tra ced in HCN(1-0) and HCO+(1-0) emission is co-located with the diffuse molecular outflow emanating from the southern nucleus, where a low-luminosity active galactic nucleus (AGN) is believed to be the dominant source of the far-infrared luminosity. On the other hand, the same lines were undetected in the outflow region associated with the northern nucleus, whose primary heating source is likely related to starburst activity without obvious signs of AGN. Both HCO+(1-0)/CO(1-0) line ratio (i.e. dense gas fraction) and the CO(3-2)/CO(1-0) line ratio are larger in the southern outflow (0.20$pm$0.04 and 1.3$pm$0.2, respectively) than in the southern nucleus (0.08$pm$0.01, 0.7$pm$0.1, respectively). By investigating these line ratios for each velocity component in the southern outflow, we find that the dense gas fraction increases and the CO(3-2)/CO(1-0) line ratio decreases towards the largest velocity offset. This suggests the existence of a two-phase (diffuse and clumpy) outflow. One possible scenario to produce such a two-phase outflow is an interaction between the jet and the interstellar medium, which possibly triggers shocks and/or star formation associated with the outflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا