ترغب بنشر مسار تعليمي؟ اضغط هنا

UV light from young stars in GEMS quasar host galaxies at 1.8<z<2.75

50   0   0.0 ( 0 )
 نشر من قبل Knud Jahnke
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed HST imaging of a sample of 23 high-redshift (1.8<z<2.75) AGN, drawn from the COMBO-17 survey. The sample contains moderately luminous quasars (M_B ~ -23). The data are part of the GEMS imaging survey that provides high resolution optical images obtained with ACS in two bands (F606W and F850LP), sampling the rest-frame UV flux of the targets. To deblend the AGN images into nuclear and resolved (host galaxy) components we use a PSF subtraction technique that is strictly conservative with respect to the flux of the host galaxy. We resolve the host galaxies in both filter bands in 9 of the 23 AGN, whereas the remaining 14 objects are considered non-detections, with upper limits of less than 5% of the nuclear flux. However, when we coadd the unresolved AGN images into a single high signal-to-noise composite image we find again an unambiguously resolved host galaxy. The recovered host galaxies have apparent magnitudes of 23.0<F606W<26.0 and 22.5<F850LP<24.5 with rest-frame UV colours in the range -0.2<(F606W-F850LP)_obs<2.3. The rest-frame absolute magnitudes at 200 nm are -20.0<M_200nm<-22.2. The photometric properties of the composite host are consistent with the individual resolved host galaxies. We find that the UV colors of all host galaxies are substantially bluer than expected from an old population of stars with formation redshift z=5, independent of the assumed metallicities. These UV colours and luminosities range up to the values found for Lyman-break galaxies (LBGs) at z=3. Our results agree with the recent discovery of enhanced blue stellar light in AGN hosts at lower redshifts. [abridged]

قيم البحث

اقرأ أيضاً

We present the results from a study of the host galaxies of 15 optically selected AGNs with 0.5<z<1.1 from GEMS. GEMS is a Hubble Space Telescope imaging survey of a ~28x28 contiguous field centered on the Chandra Deep Field South in the F606W and F8 50LP filter bands. It incorporates the SEDs and redshifts of ~10000 objects, obtained by the COMBO-17 project. We have detected the host galaxies of all 15 AGNs in the F850LP-band (and 13/15 in the F606W-band), recovering their fluxes, morphologies and structural parameters. We find that 80% of the host galaxies have early-type (bulge-dominated) morphologies, while the rest have structures characteristic of late-type (disk-dominated) galaxies. We find that 25% of the early types, and 30% of the late types, exhibit disturbances consistent with galaxy interactions. The hosts show a wide range of colors, from those of red-sequence galaxies to blue colors consistent with ongoing star formation. Roughly 70% of the morphologically early-type hosts have rest-frame blue colors, a much larger fraction than those typical of non-active morphologically early-type galaxies in this redshift and luminosity range. Yet, we find that the early-type hosts are structurally similar to red-sequence ellipticals, inasmuch as they follow an absolute magnitude versus half-light size correlation that are consistent with the mean relation for early-type galaxies at similar redshifts.
We explore the kinematics of 27 z~6 quasar host galaxies observed in [CII]-158 micron ([CII]) emission with the Atacama Large Millimeter/sub-millimeter Array at a resolution of ~0.25. We find that nine of the galaxies show disturbed [CII] emission, e ither due to a close companion galaxy or recent merger. Ten galaxies have smooth velocity gradients consistent with the emission arising from a gaseous disk. The remaining eight quasar host galaxies show no velocity gradient, suggesting that the gas in these systems is dispersion-dominated. All galaxies show high velocity dispersions with a mean of 129+-10 km/s. To provide an estimate of the dynamical mass within twice the half-light radius of the quasar host galaxy, we model the kinematics of the [CII] emission line using our publicly available kinematic fitting code, qubefit. This results in a mean dynamical mass of 5.0+-0.8(+-3.5) x 10^10 Msun. Comparison between the dynamical mass and the mass of the supermassive black hole reveals that the sample falls above the locally derived bulge mass--black hole mass relation at 2.4sigma significance. This result is robust even if we account for the large systematic uncertainties. Using several different estimators for the molecular mass, we estimate a gas mass fraction of >10%, indicating gas makes up a large fraction of the baryonic mass of z~6 quasar host galaxies. Finally, we speculate that the large variety in [CII] kinematics is an indication that gas accretion onto z~6 super massive black holes is not caused by a single precipitating factor.
We investigate quasar outflows at $z geq 6$ by performing zoom-in cosmological hydrodynamical simulations. By employing the SPH code GADGET-3, we zoom in the $2 R_{200}$ region around a $2 times 10^{12} M_{odot}$ halo at $z = 6$, inside a $(500 ~ {rm Mpc})^3$ comoving volume. We compare the results of our AGN runs with a control simulation in which only stellar/SN feedback is considered. Seeding $10^5 M_{odot}$ BHs at the centers of $10^{9} M_{odot}$ halos, we find the following results. BHs accrete gas at the Eddington rate over $z = 9 - 6$. At $z = 6$, our most-massive BH has grown to $M_{rm BH} = 4 times 10^9 M_{odot}$. Fast ($v_{r} > 1000$ km/s), powerful ($dot{M}_{rm out} sim 2000 M_{odot}$/yr) outflows of shock-heated low-density gas form at $z sim 7$, and propagate up to hundreds kpc. Star-formation is quenched over $z = 8 - 6$, and the total SFR (SFR surface density near the galaxy center) is reduced by a factor of $5$ ($1000$). We analyse the relative contribution of multiple physical process: (i) disrupting cosmic filamentary cold gas inflows, (ii) reducing central gas density, (iii) ejecting gas outside the galaxy; and find that AGN feedback has the following effects at $z = 6$. The inflowing gas mass fraction is reduced by $sim 12 %$, the high-density gas fraction is lowered by $sim 13 %$, and $sim 20 %$ of the gas outflows at a speed larger than the escape velocity ($500$ km/s). We conclude that quasar-host galaxies at $z geq 6$ are accreting non-negligible amount of cosmic gas, nevertheless AGN feedback quenches their star formation dominantly by powerful outflows ejecting gas out of the host galaxy halo.
We present ALMA observations of the [C II] 158 micron fine structure line and dust continuum emission from the host galaxies of five redshift 6 quasars. We also report complementary observations of 250 GHz dust continuum and CO (6-5) line emission fr om the z=6.00 quasar SDSS J231038.88+185519.7. The ALMA observations were carried out in the extended array at 0.7 resolution. We have detected the line and dust continuum in all five objects. The derived [C II] line luminosities are 1.6x10^{9} to 8.8x10^{9} Lsun and the [C II]-to-FIR luminosity ratios are 3.0-5.6x10^{-4}, which is comparable to the values found in other high-redshift quasar-starburst systems and local ultra-luminous infrared galaxies. The sources are marginally resolved and the intrinsic source sizes (major axis FWHM) are constrained to be 0.3 to 0.6 (i.e., 1.7 to 3.5 kpc) for the [C II] line emission and 0.2 to 0.4 (i.e., 1.2 to 2.3 kpc) for the continuum. These measurements indicate that there is vigorous star formation over the central few kpc in the quasar host galaxies. The ALMA observations also constrain the dynamical properties of the atomic gas in the starburst nuclei. The intensity-weighted velocity maps of three sources show clear velocity gradients. Such velocity gradients are consistent with a rotating, gravitationally bound gas component, although they are not uniquely interpreted as such. Under the simplifying assumption of rotation, the implied dynamical masses within the [C II]-emitting regions are of order 10^{10} to 10^{11} Msun. Given these estimates, the mass ratios between the SMBHs and the spheroidal bulge are an order of magnitude higher than the mean value found in local spheroidal galaxies, which is in agreement with results from previous CO observations of high redshift quasars.
We present ALMA band-7 data of the [CII] $lambda157.74,mu{rm m}$ emission line and underlying far-infrared (FIR) continuum for twelve luminous quasars at $z simeq 4.8$, powered by fast-growing supermassive black holes (SMBHs). Our total sample consis ts of eighteen quasars, twelve of which are presented here for the first time. The new sources consists of six Herschel/SPIRE detected systems, which we define as FIR-bright sources, and six Herschel/SPIRE undetected systems, which we define as FIR-faint sources. We determine dust masses for the quasars hosts of $M_{dust} le 0.2-25.0times 10^8 M_{odot}$, implying ISM gas masses comparable to the dynamical masses derived from the [CII] kinematics. It is found that on average the MgII line is blueshifted by $sim 500,{rm km,s}^{-1}$ with respect to the [CII] emission line, which is also observed when complementing our observations with data from the literature. We find that all of our FIR-bright subsample and most of the FIR-faint objects lie above the main sequence of star forming galaxies at $z sim 5$. We detect companion sub-millimeter galaxies (SMGs) for two sources, both FIR-faint, with a range of projected distances of $sim20-60$ kpc and with typical velocity shifts of $left|Delta vright| lesssim200,{rm km,s}^{-1}$ from the quasar hosts. Of our total sample of eighteen quasars, 5/18 are found to have dust obscured starforming companions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا