ﻻ يوجد ملخص باللغة العربية
We present ~2-4 aperture synthesis observations of the circumstellar disk surrounding the nearby young star TW Hya in the CO J=2--1 and J=3--2 lines and associated dust continuum obtained with the partially completed Submillimeter Array. The extent and peak flux of the 230 and 345 GHz dust emission follow closely the predictions of the irradiated accretion disk model of Calvet et al. (2002). The resolved molecular line emission extends to a radius of at least 200 AU, the full extent of the disk visible in scattered light, and shows a clear pattern of Keplerian rotation. Comparison of the images with 2D Monte Carlo models constrains the disk inclination angle to 7+/-1 degrees. The CO emission is optically thick in both lines, and the kinetic temperature in the line formation region is ~20K. Substantial CO depletion, by an order of magnitude or more from canonical dark cloud values, is required to explain the characteristics of the line emission.
For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being i
We present Very Large Array observations at 3.5 cm of the nearby young star TW Hya that show the emission is constant in time over weeks, months and years, and spatially resolved with peak brightness temperature ~10 K at ~0.25 (15 AU) resolution. The
The face-on disk around TW Hya is imaged in scattered light at wavelengths of 1.1 and 1.6 micron using the coronagraph in the Near Infrared Camera and Multi Object Spectrometer aboard the Hubble Space Telescope. Stellar light scattered from the optic
We present molecular line observations of 13CO and C18O J=3-2, CN N = 3 - 2, and CS J=7-6 lines in the protoplanetary disk around TW Hya at a high spatial resolution of ~9 au (angular resolution of 0.15), using the Atacama Large Millimeter/Submillime
We report the detection of spiral substructure in both the gas velocity and temperature structure of the disk around TW~Hya, suggestive of planet-disk interactions with an unseen planet. Perturbations from Keplerian rotation tracing out a spiral patt