ﻻ يوجد ملخص باللغة العربية
(Abridged) We have numerically explored the stable planetary geometry for the multiple systems involved in a 2:1 mean motion resonance, and herein we mainly concentrate on the study of the HD 82943 system by employing two sets of the orbital parameters (Mayor et al. 2004). We find that all stable orbits are related to the 2:1 commensurability for $10^{7}$ yr, and the apsidal phase-locking between two orbits can further enhance the stability for this system. For HD 82943, there exist three possible stable configurations:(1) Type I, only $theta_{1} approx 0^{circ}$,(2) Type II, $theta_{1}approxtheta_{2}approxtheta_{3}approx 0^{circ}$ (aligned case), and (3) Type III, $theta_{1}approx 180^{circ}$, $theta_{2}approx0^{circ}$, $theta_{3}approx180^{circ}$ (antialigned case), here the lowest eccentricity-type mean motion resonant arguments are $theta_{1} = lambda_{1} - 2lambda_{2} + varpi_{1}$ and $theta_{2} = lambda_{1} - 2lambda_{2} + varpi_{2}$, the relative apsidal longitudes $theta_{3} = varpi_{1}-varpi_{2}=Deltavarpi$. In addition, we also propose a semi-analytical model to study $e_{i}-Deltavarpi$ Hamiltonian contours. With the updated fit, we examine the dependence of the stability of this system on the orbital parameters. Moreover, we numerically show that the assumed terrestrial bodies cannot survive near the habitable zones for HD 82943 and low-mass planets can be dynamically habitable in the GJ 876 system at $sim 1$ AU in the numerical surveys.
We integrate the orbital solutions of the planets orbiting 55 Cnc. In the simulations, we find that not only three resonant arguments $theta_{1}=lambda_{1}-3lambda_{2}+2tildeomega_{1}$, $theta_{2}=lambda_{1}-3lambda_{2}+2tildeomega_{2}$ and $theta_{3
Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid
We study the capture and crossing probabilities into the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the ave
We present an analysis of the HD 82943 planetary system based on a radial velocity data set that combines new measurements obtained with the Keck telescope and the CORALIE measurements published in graphical form. We examine simultaneously the goodne
The paper analyses possible transfers of bodies from the main asteroid belt (MBA) to the Centaur region. The orbits of asteroids in the 2:1 mean motion resonance (MMR) with Jupiter are analysed. We selected the asteroids that are in resonant orbits w