ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of the giant HII region N11 in the LMC

96   0   0.0 ( 0 )
 نشر من قبل Yael Naze
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. Naze




اسأل ChatGPT حول البحث

Using the sensitive XMM-Newton observatory, we have observed the giant HII region N11 in the LMC for sim30 ks. We have detected several large areas of soft diffuse X-ray emission along with 37 point sources. One of the most interesting results is the possible association of a faint X-ray source with BSDL 188, a small extended object of uncertain nature. The OB associations in the field-of-view (LH9, LH10 and LH13) are all detected with XMM-Newton, but they appear very different from one another. [...] (for complete abstract, see paper) Finally, our XMM-Newton observation included simultaneous observations with the OM camera that provide us with unique UV photometry of more than 6000 sources and enable the discovery of the UV emission from the SNR N11L.

قيم البحث

اقرأ أيضاً

(Abridged) The Magellanic Clouds provide a nearby laboratory for metal-poor dwarf galaxies. The low dust abundance enhances the penetration of UV photons into the interstellar medium (ISM), resulting in a relatively larger filling factor of the ioniz ed gas. Furthermore, there is likely a hidden molecular gas reservoir probed by the [CII]157um line. We present Herschel/PACS maps in several tracers, [CII], [OI]63um,145um, [NII]122um, [NIII]57um, and [OIII]88um in the HII region N11B in the Large Magellanic Cloud. Halpha and [OIII]5007A images were used as complementary data to investigate the effect of dust extinction. Observations were interpreted with photoionization models to infer the gas conditions and estimate the ionized gas contribution to the [CII] emission. Photodissociation regions (PDRs) are probed through polycyclic aromatic hydrocarbons (PAHs). We first study the distribution and properties of the ionized gas. We then constrain the origin of [CII]157um by comparing to tracers of the low-excitation ionized gas and of PDRs. [OIII] is dominated by extended emission from the high-excitation diffuse ionized gas; it is the brightest far-infrared line, ~4 times brighter than [CII]. The extent of the [OIII] emission suggests that the medium is rather fragmented, allowing far-UV photons to permeate into the ISM to scales of >30pc. Furthermore, by comparing [CII] with [NII], we find that 95% of [CII] arises in PDRs, except toward the stellar cluster for which as much as 15% could arise in the ionized gas. We find a remarkable correlation between [CII]+[OI] and PAH emission, with [CII] dominating the cooling in diffuse PDRs and [OI] dominating in the densest PDRs. The combination of [CII] and [OI] provides a proxy for the total gas cooling in PDRs. Our results suggest that PAH emission describes better the PDR gas heating as compared to the total infrared emission.
We present a study of the LMC compact HII region N11A using Hubble Space Telescope imaging observations which resolve N11A and reveal its unknown nebular and stellar features. The presence of a sharp ionization front extending over more than 4 (1 pc) and fine structure filaments as well as larger loops indicate an environment typical of massive star formation regions, in agreement with high [OIII]/Hb line ratios. N11A is a young region, as deduced from its morphology, reddening, and especially high local concentration of dust, as indicated by the Balmer decrement map. Our observations also reveal a cluster of stars lying towards the central part of N11A. Five of the stars are packed in an area less than 2 (0.5 pc), with the most luminous one being a mid O type star. N11A appears to be the most evolved compact HII region in the Magellanic Clouds so far studied.
(abridged) The ambiguous origin of [CII] 158um in the interstellar medium complicates its use for diagnostics concerning the star-formation rate and physical conditions in photodissociation regions (PDRs). We observed the giant HII region N11 in the Large Magellanic Cloud with SOFIA/GREAT in order to investigate the origin of [CII] to obtain the total H2 gas content, the fraction of CO-dark H2 gas, and the influence of environmental effects such as stellar feedback. We present an innovative spectral decomposition method that allows statistical trends to be derived. The [CII] line is resolved in velocity and compared to HI and CO, using a Bayesian approach to decompose the profiles. A simple model accounting for collisions in the neutral atomic and molecular gas was used in order to derive the H2 column density traced by C+. The profile of [CII] most closely resembles that of CO, but the integrated [CII] line width lies between that of CO and that of HI. Using various methods, we find that [CII] mostly originates from the neutral gas. We show that [CII] mostly traces the CO-dark H2 gas but there is evidence of a weak contribution from neutral atomic gas preferentially in the faintest components. Most of the molecular gas is CO-dark. The fraction of CO-dark H2 gas decreases with increasing CO column density, with a slope that seems to depend on the impinging radiation field from nearby massive stars. Finally we extend previous measurements of the photoelectric-effect heating efficiency, which we find is constant across regions probed with Herschel, with [CII] and [OI] being the main coolants in faint and diffuse, and bright and compact regions, respectively, and with PAH emission tracing the CO-dark H2 gas heating where [CII] and [OI] emit. Our study highlights the importance of velocity-resolved PDR diagnostics and higher spatial resolution for HI observations.
208 - Yael Naze , You-Hua Chu 2014
A very sensitive X-ray investigation of the giant HII region N11 in the LMC was performed using the Chandra X-ray Observatory. The 300ks observation reveals X-ray sources with luminosities down to 10^32 erg/s, increasing by more than a factor of 5 th e number of known point sources in the field. Amongst these detections are 13 massive stars (3 compact groups of massive stars, 9 O-stars and one early B-star) with log(Lx/Lbol)~-6.5 to -7, which may suggest that they are highly magnetic or colliding wind systems. On the other hand, the stacked signal for regions corresponding to undetected O-stars yields log(Lx/Lbol)~-7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.
We report the results of preliminary analysis of the XMM_Newton EPIC and RGS observations of the candidate black-hole binary LMC X-3 between February and June 2000. The observations covered both the soft and the hard X-ray spectral states. The hard-s tate spectra were dominated by a power-law component with a photon index Gamma = 1.9 +/- 0.1. The soft-state spectra consisted of a thermal component with a multi-colour disk temperature T_in = 0.9 keV and a power-law tail with Gamma ~ 2.5--2.7. The model in which the X-rays from LMC X-3 in the high-soft state are powered by a strong stellar wind from a massive companion is not supported by the small line-of-sight absorption (n_H <~ 10^{21} cm^{-2}) deduced from the RGS data. The transition from the soft to the hard state appears to be a continuous process associated with the changes in the mass-transfer rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا