ﻻ يوجد ملخص باللغة العربية
The excursion set model provides a convenient theoretical framework to derive dark matter halo abundances. This paper generalizes the model by introducing a more realistic merging and collapse process. A new parameter regulates the influence of the environment and thus the coherence (non-Markovianity) of the merging and the collapse of individual mass shells. The model mass function also includes the effects of an ellipsoidal collapse. Analytic approximations of the halo mass function are derived for scale-invariant power spectra with the slopes $n=0,-1,-2$. The $n=-2$ mass function can be compared with the results obtained from the `Hubble volume simulations. A significant detection of non-Markovian effects is found for an assumed accuracy of the simulated mass function of 10%.
The merger and accretion probabilities of dark matter halos have so far only been calculated for an infinitesimal time interval. This means that a Monte-Carlo simulation with very small time steps is necessary to find the merger history of a parent h
We derive approximated, yet very accurate analytical expressions for the abundance and clustering properties of dark matter halos in the excursion set peak framework; the latter relies on the standard excursion set approach, but also includes the eff
We compute the effect of primordial non-Gaussianity on the halo mass function, using excursion set theory. In the presence of non-Gaussianity the stochastic evolution of the smoothed density field, as a function of the smoothing scale, is non-markovi
A sizeable level of non-Gaussianity in the primordial cosmological perturbations may be induced by a large trispectrum, i.e. by a large connected four-point correlation function. We compute the effect of a primordial non-Gaussian trispectrum on the h
The simplest stochastic halo formation models assume that the traceless part of the shear field acts to increase the initial overdensity (or decrease the underdensity) that a protohalo (or protovoid) must have if it is to form by the present time. Eq