ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic Iron Lines in Galactic Black Holes: Recent Results and Lines in the ASCA Archive

86   0   0.0 ( 0 )
 نشر من قبل Jon M. Miller
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. M. Miller




اسأل ChatGPT حول البحث

Recent observations with Chandra and XMM-Newton, aided by broad-band spectral coverage from RXTE, have revealed skewed relativistic iron emission lines in stellar-mass Galactic black hole systems. Such systems are excellent laboratories for testing General Relativity, and relativistic iron lines provide an important tool for making such tests. In this contribution to the Proceedings of the 10th Annual Marcel Grossmann Meeting on General Relativity, we briefly review recent developments and present initial results from fits to archival ASCA observations of Galactic black holes. It stands to reason that relativistic effects, if real, should be revealed in many systems (rather than just one or two); the results of our archival work have borne-out this expectation. The ASCA spectra reveal skewed, relativistic lines in XTE J1550-564, GRO J1655-40, GRS 1915+105, and Cygnus X-1.



قيم البحث

اقرأ أيضاً

The shape and the intensity of the 6.4 keV iron line bring unique information on the geometrical and physical properties of the supermassive black hole and the surrounding accreting gas at the very center of Active Galactic Nuclei. While there are co nvincing evidences of a relativistically broadened iron line in a few nearby bright objects, their properties at larger distances are basically unknown. We have searched for the presence of iron line by fully exploiting Chandra observations in the deep fields. The line is clearly detected in the average spectra of about 250 sources stacked in several redshift bins over the range z=0.5-4.0. We discuss their average properties with particular enphasys on the presence and intensity of a broad component.
We analyze X-ray spectra of heavily obscured (N_H > 10^{24} cm^{-2}) active galaxies obtained with Chandra, concentrating on the iron K alpha fluorescence line. We measure very large equivalent widths in most cases, up to 5 keV in the most extreme ex ample. The geometry of an obscuring torus of material near the active galactic nucleus (AGN) determines the Fe emission, which we model as a function of torus opening angle, viewing angle, and optical depth. The starburst/AGN composite galaxies in this sample require small opening angles. Starburst/AGN composite galaxies in general therefore present few direct lines of sight to their central engines. These composite galaxies are common, and their large covering fractions and heavy obscuration effectively hide their intrinsically bright X-ray continua. While few distant obscured AGNs have been identified, we propose to exploit their signature large Fe K alpha equivalent widths to find more examples in X-ray surveys.
119 - Lev Titarchuk 2009
We perform the analysis of the iron K_alpha lines detected in three sources representing of three types of accreting compact sources: cataclysmic variable (CV) GK Per, neutron star (NS) Serpens X-1 and black hole (BH) GX 339-4. We find, using data fr om Epic-PN Camera on-board XMM-Newton observatory,that the iron K_alpha emission line in GK Per has a noticeable red-skewed profile. We compare the GK Per asymmetric line with the red-skewed lines observed by XMM-Newton in Serpens X-1 and GX 339-4. The observation of the K_alpha emission with red-skewed features in CV GK Per cannot be related to the redshift effects of General Relativity (GR). Therefore, if the mechanism of the K_alpha-line formation is the same in CVs, NSs and BHs then it is evident that the GR effects would be ruled out as a cause of red skewness of K_alpha line. The line reprocessing in an outflowing wind has been recently suggested an alternative model for a broad red-shifted iron line formation. In the framework of the outflow scenario the red-skewed iron line is formed in the strong extended wind due to its illumination by the radiation emanating from the innermost part of the accreting material. In this Paper we demonstrate that the asymmetric shapes of the lines detected from these CV, NS and BH sources are well described with the wind (outflow) model. While this fact is hard to reconcile with the relativistic models, it is consistent with the outflowing gas washing out high frequency modulations of the radiation presumably originated in the innermost part of the source.
We present a uniform X-ray spectral analysis of eight type-1 active galactic nuclei (AGN) that have been previously observed with relativistically broadened iron emission lines. Utilizing data from the XMM-Newton European Photon Imaging Camera (EPIC- pn) we carefully model the spectral continuum, taking complex intrinsic absorption and emission into account. We then proceed to model the broad Fe K feature in each source with two different accretion disk emission line codes, as well as a self-consistent, ionized accretion disk spectrum convolved with relativistic smearing from the inner disk. Comparing the results, we show that relativistic blurring of the disk emission is required to explain the spectrum in most sources, even when one models the full reflection spectrum from the photoionized disk.
In order to elucidate origin of the Galactic Ridge X-ray Emission, we analyzed Suzaku data taken at various regions along the Galactic plane and studied their Fe-K emission line features. Suzaku resolved the Fe line complex into three narrow lines at ~6.4 keV,~6.7 keV and ~6.97 keV, which are K-lines from neutral (or low-ionized), He-like, and H-like iron ions, respectively. The 6.7 keV line is clearly seen in all the observed regions and its longitudinal distribution is consistent with that determined from previous observations. The 6.4 keV emission line was also found in various Galactic plane regions (b~0). Differences in flux ratios of the 6.4 keV/6.7 keV and 6.97 keV/6.7 keV lines between the Galactic plane and the Galactic center regions are studied and its implication is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا