ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstructing Galaxy Histories from Globular Clusters

212   0   0.0 ( 0 )
 نشر من قبل Michael J. West
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michael J. West




اسأل ChatGPT حول البحث

Nearly a century after the true nature of galaxies as distant island universes was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

قيم البحث

اقرأ أيضاً

187 - Michael J. West 2001
The present-day globular cluster populations of galaxies reflect the cumulative effects of billions of years of galaxy evolution via such processes as mergers, tidal stripping, accretion, and in some cases the partial or even complete destruction of other galaxies. If large galaxies have grown by consuming their smaller neighbors, or by accreting material stripped from other galaxies, then their observed globular cluster systems are an amalgamation of the globular cluster systems of their progenitors. Careful analysis of the globular cluster populations of galaxies can thus allow astronomers to reconstruct their dynamical histories.
It is generally recognized that massive galaxies form through a combination of in-situ collapse and ex-situ accretion. The in-situ component forms early, where gas collapse and compaction leads to the formation of massive compact systems (blue and re d nuggets) seen at $z>1$. The subsequent accretion of satellites brings in ex-situ material, growing these nuggets in size and mass to appear as the massive early-type galaxies (ETGs) we see locally. Due to stochasticity in the accretion process, in a few rare cases a red nugget will evolve to the present day having undergone little ex-situ mass accretion. The resulting massive, compact and ancient objects have been termed relic galaxies. Detailed stellar population and kinematic analyses are required to characterise these systems. However, an additional crucial aspect lies in determining the fraction of ex-situ mass they have accreted since their formation. Globular cluster systems can be used to constrain this fraction, since the oldest and most metal-poor globular clusters in massive galaxies are primarily an accreted, ex-situ population. Models for the formation of relic galaxies and their globular cluster systems suggest that, due to their early compaction and limited accretion of dark-matter dominated satellites, relic galaxies should have characteristically low dark-matter mass fractions compared to ETGs of the same stellar mass.
The formation histories of globular clusters (GCs) are a key diagnostic for understanding their relation to the evolution of the Universe through cosmic time. We use the suite of 25 cosmological zoom-in simulations of present-day Milky Way-mass galax ies from the E-MOSAICS project to study the formation histories of stars, clusters, and GCs, and how these are affected by the environmental dependence of the cluster formation physics. We find that the median lookback time of GC formation in these galaxies is ${sim}10.73~$Gyr ($z=2.1$), roughly $2.5~$Gyr earlier than that of the field stars (${sim}8.34~$Gyr or $z=1.1$). The epoch of peak GC formation is mainly determined by the time evolution of the maximum cluster mass, which depends on the galactic environment and largely increases with the gas pressure. Different metallicity subpopulations of stars, clusters and GCs present overlapping formation histories, implying that star and cluster formation represent continuous processes. The metal-poor GCs ($-2.5<[rm Fe/H]<-1.5$) of our galaxies are older than the metal-rich GC subpopulation ($-1.0<[rm Fe/H]<-0.5$), forming $12.13~$Gyr and $10.15~$Gyr ago ($z=3.7$ and $z=1.8$), respectively. The median ages of GCs are found to decrease gradually with increasing metallicity, which suggests different GC metallicity subpopulations do not form independently and their spatial and kinematic distributions are the result of their evolution in the context of hierarchical galaxy formation and evolution. We predict that proto-GC formation is most prevalent at $2lesssim z lesssim 3$, which could be tested with observations of lensed galaxies using JWST.
Our numerical simulations first demonstrate that the pressure of ISM in a major merger becomes so high ($>$ $10^5$ $rm k_{rm B}$ K $rm cm^{-3}$) that GMCs in the merger can collapse to form globular clusters (GCs) within a few Myr. The star formation efficiency within a GMC in galaxy mergers can rise up from a few percent to $sim$ 80 percent, depending on the shapes and the temperature of the GMC. This implosive GC formation due to external high pressure of warm/hot ISM can be more efficient in the tidal tails or the central regions of mergers. The developed clusters have King-like profile with the effective radius of a few pc. The structural, kinematical, and chemical properties of these GC systems can depend on orbital and chemical properties of major mergers.
The halo and disc globular cluster population can be used as a tracer of the primordial epochs of the Milky Way formation. In this work, literature data of globular clusters ages, chemical abundances, and structural parameters are studied, explicitly focussing on the origin of the known split in the age-metallicity relation of globular clusters. When the alpha-element abundances, which are less strongly affected by the internal light-element spread of globular clusters (Si, Ca), are considered, a very low observational scatter among metal-poor clusters is observed. A plateau at [SiCa/Fe]~0.35 dex, with a dispersion of only 0.05 dex is observed up to a metallicity of about -0.75 dex. Only a few metal-poor clusters in this metallicity interval present low [SiCa/Fe] abundances. Moreover, metal-rich globular clusters show a knee in the [alpha/Fe] versus [Fe/H] plane around [Fe/H] -0.75 dex. As a consequence, if a substantial fraction of galactic globular clusters has an external origin, they have to be mainly formed either in galaxies that are massive enough to ensure high levels of [alpha/Fe] element abundances even at intermediate metallicity, or in lower mass dwarf galaxies accreted by the Milky Way in their early phases of formation. Finally, clusters in the metal-poor branch of the AMR present an anti-correlation of [SiCa/Fe] with the total cluster magnitude, while this is not the case for metal-rich branch clusters. In addition, this lack of faint high-alpha clusters in the young metal-poor population is in contrast with what is observed for old and more metal-poor clusters, possibly reflecting a higher heterogeneity of formation environments at lower metallicity. Accretion of high-mass satellites, as a major contribution to the current Milky Way globular cluster system both in the metal-poor and the metal-intermediate regime is compatible with the observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا