ﻻ يوجد ملخص باللغة العربية
We discuss the possibility of performing blind surveys to detect large-scale features of the universe using 21cm emission. Using instruments with approx. 5-10 resolution currently in the planning stage, it should be possible to detect virialized galaxy clusters at intermediate redshifts using the combined emission from their constituent galaxies, as well as less overdense structures, such as proto-clusters and the `cosmic web, at higher redshifts. Using semi-analytic methods we compute the number of virialized objects and those at turnaround which might be detected by such surveys. We find a surprisingly large number of objects might be detected even using small (approx. 5%) bandwidths and elaborate on some issues pertinent to optimising the design of the instrument and the survey strategy. The main uncertainty is the fraction of neutral gas relative to the total dark matter within the object. We discuss this issue in the context of the observations which are currently available.
We discuss the possibility of performing a substantial spectroscopic galaxy redshift survey selected via the 21cm emission from neutral hydrogen using the Five-hundred metre Aperture Spherical Telescope (FAST) to be built in China. We consider issues
We present images obtained with LABOCA on the APEX telescope of a sample of 22 galaxies selected via their red Herschel SPIRE 250-, 350- and $500textrm{-}mutextrm{m}$ colors. We aim to see if these luminous, rare and distant galaxies are signposting
By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radi
In the local Universe, globular clusters (GCs) with metallicities $[{rm Fe}/{rm H}]<-2.5$ are extremely rare. In this Letter, the close connection between GC formation and galaxy evolution is used to show that this GC metallicity `floor results from
Francis & Hewett (1993) identified two 10-Mpc scale regions of the high redshift universe that were seemingly very overdense in neutral hydrogen. Subsequent observations showed that at least one of these gas-rich regions enveloped a cluster of galaxi