ترغب بنشر مسار تعليمي؟ اضغط هنا

Confusion noise at far-IR to millimeter wavelengths

114   0   0.0 ( 0 )
 نشر من قبل Mattia Negrello
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present detailed predictions for the confusion noise due to extragalactic sources in the far-IR/(sub)-millimeter channels of ESA/ISO, NASA/Spitzer, ESA/Herschel and ESA/Planck satellites, including the contribution from clustering of unresolved SCUBA galaxies. Clustering is found to increase the confusion noise, compared to the case of purely Poisson fluctuations, by 10-15% for the lowest frequency (i.e. lowest angular resolution) Spitzer and Herschel channels, by 25-35% for the 175 micron ISOPHOT channel, and to dominate in the case of Planck/HFI channels at nu>143GHz. Although our calculations make use of a specific evolutionary model (Granato et al. 2004), the results are strongly constrained by the observed counts and by data on the redshift distribution of SCUBA sources, and therefore are not expected to be heavily model dependent. The main uncertainty arises from the poor observational definition of the source clustering properties. Two models have been used for the latter: a power-law with constant slope and a redshift-independent comoving correlation length,r_0, and the standard theoretical model for clustering evolution in a LambdaCDM universe, with a redshift-dependent bias factor. In both cases, the clustering amplitude has been normalized to yield a unit angular correlation function at theta_0=1-2 arcsec for 850 micron sources fainter than 2 mJy, consistent with the results by Peacock et al. (2000). This normalization yields, for the first model, r_0=8.3$ Mpc/h, and, for the second model, an effective mass of dark matter haloes in which these sources reside of M_halo=1.8*10^{13} M_sun/h. These results are consistent with independent estimates for SCUBA galaxies and for other, likely related, sources.



قيم البحث

اقرأ أيضاً

We present a comprehensive analysis for the determination of the confusion levels for the current and the next generation of far-infrared surveys assuming three different cosmological evolutionary scenarios. We include an extensive model for diffuse emission from infrared cirrus in order to derive absolute sensitivity levels taking into account the source confusion noise due to point sources, the sky confusion noise due to the diffuse emission, and instrumental noise. We use our derived sensitivities to suggest best survey strategies for the current and the future far-infrared space missions Spitzer, AKARI (ASTRO-F), Herschel, and SPICA. We discuss whether the theoretical estimates are realistic and the competing necessities of reliability and completeness. We find the best estimator for the representation of the source confusion and produce predictions for the source confusion using far-infrared source count models. From these confusion limits considering both source and sky confusions, we obtain the optimal, confusion limited redshift distribution for each mission. Finally, we predict the Cosmic Far-Infrared Background (CFIRB) which includes information about the number and distribution of the contributing sources.
Fluctuations in the brightness of the background radiation can lead to confusion with real point sources. Such background emission confusion will be important for infrared observations with relatively large beam sizes since the amount of fluctuation tends to increase with angular scale. In order to quantitively assess the effect of the background emission on the detection of point sources for current and future far-infrared observations by space-borne missions such as Spitzer, ASTRO-F, Herschel and SPICA, we have extended the Galactic emission map to higher angular resolution than the currently available data. Using this high resolution map, we estimate the sky confusion noise due to the emission from interstellar dust clouds or cirrus, based on fluctuation analysis and detailed photometry over realistically simulated images. We find that the confusion noise derived by simple fluctuation analysis agrees well with the result from realistic simulations. Although the sky confusion noise becomes dominant in long wavelength bands (> 100 um) with 60 - 90cm aperture missions, it is expected to be two order of magnitude smaller for the next generation space missions with larger aperture sizes such as Herschel and SPICA.
Interstellar polarization at far-infrared through millimeter wavelengths (0.1 - 1 mm) is primarily due to thermal emission from dust grains aligned with magnetic fields. This mechanism has led to studies of magnetic fields in a variety of celestial s ources, as well as the physical characteristics of the dust grains and their interaction with the field. Observations have covered a diverse array of sources, from entire galaxies to molecular clouds and proto-stellar disks. Maps have been generated on a wide range of angular scales, from surveys covering large fractions of the sky, down to those with arcsecond spatial resolution. Additionally, the increasing availability of observations at multiple wavelengths in this band allows empirical tests of models of grain alignment and cloud structure. I review some of the recent work in this field, emphasizing comparisons of observations on multiple spatial scales and at multiple wavelengths.
140 - D. Puy 2001
Chemistry plays a particular role in astrophysics. After atomic hydrogen, helium and their ions, the Universe probably contains more mass in molecules than in any other species. Molecule formation in the early, pre-galactic Universe may have had mu ch to do with the formation of galaxies themselves. In this context the possible interaction between primordial molecules and photons of the Cosmic Microwave Background is very important through the theoretical perspectives and constraints which could give some information on the theory of the large scale structure formation. In this paper we recall the more recent progresses on the chemistry of the early Universe, and describe the importance of molecules in the formation phase of proto objects. A special attention is done concerning the {it case of LiH.
Aims: The aim of this paper is to demonstrate that millimeter wave data can be used to distinguish between various atmospheric models of sunspots, whose temperature structure in the upper photosphere and chromosphere has been the source of some contr oversy. Methods: We use observations of the temperature contrast (relative to the quiet Sun) above a sunspot umbra at 3.5 mm obtained with the Berkeley-Illinois-Maryland Array (BIMA), complemented by submm observations from Lindsey & Kopp (1995) and 2 cm observations with the Very Large Array. These are compared with the umbral contrast calculated from various atmospheric models of sunspots. Results: Current mm and submm observational data suggest that the brightness observed at these wavelengths is low compared to the most widely used sunspot models. These data impose strong constraints on the temperature and density stratifications of the sunspot umbral atmosphere, in particular on the location and depth of the temperature minimum and the location of the transition region. Conclusions: A successful model that is in agreement with millimeter umbral brightness should have an extended and deep temperature minimum (below 3000 K). Better spatial resolution as well as better wavelength coverage are needed for a more complete determination of the chromospheric temperature stratification above sunspot umbrae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا