ترغب بنشر مسار تعليمي؟ اضغط هنا

Supernova Properties from Shock Breakout X-rays

95   0   0.0 ( 0 )
 نشر من قبل Andrew Calzavara
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Calzavara




اسأل ChatGPT حول البحث

We investigate the potential of the upcoming LOBSTER space observatory (due circa 2009) to detect soft X-ray flashes from shock breakout in supernovae, primarily from Type II events. LOBSTER should discover many SN breakout flashes, although the number is sensitive to the uncertain distribution of extragalactic gas columns. X-ray data will constrain the radii of their progenitor stars far more tightly than can be accomplished with optical observations of the SN light curve. We anticipate the appearance of blue supergiant explosions (SN 1987A analogs), which will uncover a population of these underluminous events. We consider also how the mass, explosion energy, and absorbing column can be constrained from X-ray observables alone and with the assistance of optically-determined distances. These conclusions are drawn using known scaling relations to extrapolate, from previous numerical calculations, the LOBSTER response to explosions with a broad range of parameters. We comment on a small population of flashes with 0.2 < z < 0.8 that should exist as transient background events in XMM, Chandra, and ROSAT integrations.



قيم البحث

اقرأ أيضاً

146 - Anthony L. Piro 2009
The mode of explosive burning in Type Ia SNe remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the DDT). We argue that this transition leads to a breakou t shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (~20 keV) lasting ~0.01 s with a total radiated energy of ~10^{40} ergs, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M_V = -9 to -10 at approximately 1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m=24) will see it out to a distance of approximately 80 Mpc, giving a maximum rate of ~60/yr. Archival data sets can also be used to study the early rise dictated by the shock heating (at about 20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion induced collapse to a neutron star, but with a lower occurrence rate.
Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic core-collapse supernova. Such events are usually only detected at least a few days after the star has exploded. Observation s of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars
Neutrinos and gravitational waves are the only direct probes of the inner dynamics of a stellar core collapse. They are also the first signals to arrive from a supernova and, if detected, establish the moment when the shock wave is formed that unbind s the stellar envelope and later initiates the optical display upon reaching the stellar surface with a burst of UV and X-ray photons, the shock breakout (SBO). We discuss how neutrino observations can be used to trigger searches to detect the elusive SBO event. Observation of the SBO would provide several important constraints on progenitor structure and the explosion, including the shock propagation time (the duration between the neutrino burst and SBO), an observable that is important in distinguishing progenitor types. Our estimates suggest that next generation neutrino detectors could exploit the overdensity of nearby SNe to provide several such triggers per decade, more than an order of magnitude improvement over the present.
Shock breakout is the brightest radiative phenomenon in a Type II supernova (SN). Although it was predicted to be bright, the direct observation is difficult due to the short duration and X-ray/ultraviolet-peaked spectra. First entire observations of the shock breakouts of Type II Plateau SNe (SNe IIP) were reported in 2008 by ultraviolet and optical observations by the {it GALEX} satellite and supernova legacy survey (SNLS), named SNLS-04D2dc and SNLS-06D1jd. We present multicolor light curves of a SN IIP, including the shock breakout and plateau, calculated with a multigroup radiation hydrodynamical code {sc STELLA} and an evolutionary progenitor model. The synthetic multicolor light curves reproduce well the observations of SNLS-04D2dc. This is the first study to reproduce the ultraviolet light curve of the shock breakout and the optical light curve of the plateau consistently. We conclude that SNLS-04D2dc is the explosion with a canonical explosion energy $1.2times10^{51}$ ergs and that its progenitor is a star with a zero-age main-sequence mass $20M_odot$ and a presupernova radius $800R_odot$. The model demonstrates that the peak apparent $B$-band magnitude of the shock breakout would be $m_{rm B}sim26.4$ mag if a SN being identical to SNLS-04D2dc occurs at a redshift $z=1$, which can be reached by 8m-class telescopes. The result evidences that the shock breakout has a great potential to detect SNe IIP at $zgsim1$.
High cadence ultraviolet, optical and near-infrared photometric and low-resolution spectroscopic observations of the peculiar Type II supernova (SN) 2018hna are presented. The early phase multiband light curves exhibit the adiabatic cooling envelope emission following the shock breakout up to ~14 days from the explosion. SN~2018hna has a rise time of $sim$,88 days in the V-band, similar to SN 1987A. A $rm^{56}Ni$ mass of ~0.087$pm$0.004 $rm M_{odot}$ is inferred for SN 2018hna from its bolometric light curve. Hydrodynamical modelling of the cooling phase suggests a progenitor with a radius ~50 $rm R_{odot}$, a mass of ~14-20 $rm M_{odot}$ and explosion energy of ~1.7-2.9$rm times$ $rm 10^{51} erg$. The smaller inferred radius of the progenitor than a standard red supergiant is indicative of a blue supergiant progenitor of SN 2018hna. A sub-solar metallicity (~0.3 $rm Z_{odot}$) is inferred for the host galaxy UGC 07534, concurrent with the low-metallicity environments of 1987A-like events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا