ﻻ يوجد ملخص باللغة العربية
Understanding the processes which create and destroy $^{22}$Na is important for diagnosing classical nova outbursts. Conventional $^{22}$Na(p,$gamma$) studies are complicated by the need to employ radioactive targets. In contrast, we have formed the particle-unbound states of interest through the heavy-ion fusion reaction, $^{12}$C($^{12}$C,n)$^{23}$Mg and used the Gammasphere array to investigate their radiative decay branches. Detailed spectroscopy was possible and the $^{22}$Na(p,$gamma$) reaction rate has been re-evaluated. New hydrodynamical calculations incorporating the upper and lower limits on the new rate suggest a reduction in the yield of $^{22}$Na with respect to previous estimates, implying a reduction in the maximum detectability distance for $^{22}$Na $gamma$ rays from novae.
We investigate the impact of the new LUNA rate for the nuclear reaction $^{22}$Ne$(p,gamma)^{23}$Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars that experien
We explore for the first time effects of the magnetic field on the escape of $^{22}$Na positrons and on the flux evolution of annihilation 511 keV line in novae. It is shown that for the white dwarf magnetic field of $sim 10^6$ G the field of the exp
The $^{22}$Ne(p,$gamma$)$^{23}$Na reaction is the most uncertain process in the neon-sodium cycle of hydrogen burning. At temperatures relevant for nucleosynthesis in asymptotic giant branch stars and classical novae, its uncertainty is mainly due to
The $^{22}$Ne(p,$gamma$)$^{23}$Na reaction in NeNa cycle plays an important role in the production of only stable sodium isotope $^{23}$Na. This nucleus is processed by the NeNa cycle during hot bottom burning (HBB) in asymptotic giant branch (AGB) s
The $^{22}$Ne(p,$gamma$)$^{23}$Na reaction is included in the neon-sodium cycle of hydrogen burning. A number of narrow resonances in the Gamow window dominates the thermonuclear reaction rate. Several resonance strengths are only poorly known. As a