ﻻ يوجد ملخص باللغة العربية
We present low-frequency, GMRT (Giant Metrewave Radio Telescope) observations at 333 and 617 MHz of the most-distant giant quasar, J1432+158, which is at a redshift of 1.005. The radio source has a total angular extent of 168 arcsec, corresponding to a projected linear size of 1.35 Mpc. This makes it presently the largest single object observed beyond a redshift of one. The objectives of the GMRT observations were to investigate the possibility of detecting a bridge of emission at low frequencies, which may be suppressed due to inverse-Compton losses against the cosmic microwave background radiation. We detect a jet-like structure connecting the core to the western hotspot, while the eastern hotspot is found to be largely tail-less with no significant bridge emission. The estimated life-time for the radiating electrons in the tail of the western lobe appears smaller than the travel time of the radiating particles from the hotspot, suggesting either in-situ acceleration or dissipation of energy by the jet at this location. The pressure of the intergalactic medium at $zsim1$ estimated from the minimum energy density calculations appears to be marginally lower than the value extrapolated from nearby giant radio galaxies.
A five square arcminute region around the luminous radio-loud quasar SDSS J0836+0054 (z=5.8) hosts a wealth of associated galaxies, characterized by very red (1.3 < i_775 - z_{850} < 2.0) color. The surface density of these z~5.8 candidates is approx
Context: The highest redshift quasars at z>~6 receive considerable attention since they provide strong constraints on the growth of the earliest supermassive black holes. They also probe the epoch of reionisation and serve as lighthouses to illuminat
We report the 888 MHz radio detection in the Rapid ASKAP Continuum Survey (RACS) of VIK J2318$-$3113, a $z$=6.44 quasar. Its radio luminosity (1.2 $times 10^{26}$ W Hz$^{-1}$ at 5 GHz) compared to the optical luminosity (1.8 $times 10^{24}$ W Hz$^{-1
We report observations of three SDSS z>6 QSOs at 250 GHz (1.2mm) using the 117-channel Max-Planck Millimeter Bolometer (MAMBO-2) array at the IRAM 30-meter telescope. J1148+5251 (z=6.41) and J1048+4637 (z=6.23) were detected with 250 GHz flux densiti
We report on the discovery of the most distant Milky Way (MW) stars known to date: ULAS J001535.72$+$015549.6 and ULAS J074417.48$+$253233.0. These stars were selected as M giant candidates based on their infrared and optical colors and lack of prope