ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated Determination of Stellar Population Parameters in Galaxies Using Active Instance-based Learning

38   0   0.0 ( 0 )
 نشر من قبل Elena Terlevich
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thamar Solorio




اسأل ChatGPT حول البحث

In this work we focus on the determination of the relative distributions of young, intermediate-age and old populations of stars in galaxies. Starting from a grid of theoretical population synthesis models we constructed a set of model galaxies with a distribution of ages, metallicities and intrinsic reddening. Using this set we have explored a new fitting method that presents several advantages over conventional methods. We propose an optimization technique that combines active learning with an instance-based machine learning algorithm. Experimental results show that this method can estimate with high speed and accuracy the physical parameters of the stellar populations.



قيم البحث

اقرأ أيضاً

We have developed a method for fast and accurate stellar population parameters determination in order to apply it to high resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star-formation history and dust content in synthetic galaxies with a wide range of S/N ratios. The synthetic galaxies where constructed using two different grids of high resolution theoretical population synthesis models. The results of our controlled experiment shows that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N=5 the typical average deviation between the input and fitted spectrum is less than 10**{-5}. Additional improvements are achieved using prior knowledge.
We present a new technique to segregate old and young stellar populations in galactic spectra using machine learning methods. We used an ensemble of classifiers, each classifier in the ensemble specializes in young or old populations and was trained with locally weighted regression and tested using ten-fold cross-validation. Since the relevant information concentrates in certain regions of the spectra we used the method of sequential floating backward selection offline for feature selection. The application to Seyfert galaxies proved that this technique is very insensitive to the dilution by the Active Galactic Nucleus (AGN) continuum. Comparing with exhaustive search we concluded that both methods are similar in terms of accuracy but the machine learning method is faster by about two orders of magnitude.
61 - S. C. Trager 2000
We present single stellar population (SSP) equivalent ages, metallicities, and abundance ratios for local elliptical galaxies derived from Hbeta, Mgb, and <Fe> absorption line strengths. We use an extension of the Worthey (1994) stellar population mo dels that incorporates non-solar line-strength response functions by Tripicco & Bell (1995), allowing us to correct the models for the enhancements of Mg and other alpha-like elements relative to the Fe-peak elements. SSP-equivalent ages of local ellipticals from Gonzalez (1993) are found to vary widely, 1.5 < t < 18 Gyr, while metallicities [Z/H] and enhancement ratios [E/Fe] are strongly peaked around <[Z/H]>=+0.26 and <[E/Fe]>=+0.20 (in an aperture of radius Re/8). The enhancement ratios are milder than previous estimates, owing to the application of non-solar abundance corrections to both Mgb and <Fe> for the first time. Gradients in stellar populations within galaxies are found to be mild, with SSP-equivalent age decreasing by 25%, metallicity decreasing by <[Z/H]>=0.20 dex, and [E/Fe] remaining nearly constant out to an aperture of radius Re/2 for nearly all systems. Our ages have an overall zeropoint uncertainty of at least 25% due to uncertainties in the stellar evolution prescription, the oxygen abundance, the effect of non-solar abundances on the isochrones, and other unknowns. However, the relative age rankings of stellar populations should be largely unaffected by these errors. In particular, the large spread in ages appears to be real and cannot be explained by contamination of Hbeta by blue stragglers or hot horizontal branch stars, or by fill-in of Hbeta by emission. Correlations between these derived SSP-equivalent parameters and other galaxy observables will be discussed in future papers. (Abridged)
82 - S. C. Trager 2000
We analyze single-stellar-population (SSP) equivalent parameters for 50 local elliptical galaxies as a function of their structural parameters. These galaxies fill a two-dimensional plane in the four-dimensional space of [Z/H], log t, log $sigma$, an d [E/Fe]. SSP age and velocity dispersion can be taken as the two independent parameters that specify a galaxys location in this ``hyperplane. The hyperplane can be decomposed into two sub-relations: (1) a ``Z-plane, in which [Z/H] is a linear function of log $sigma$ and log t; and (2) a relation between [E/Fe] and $sigma$ in which [E/Fe] is larger in high-$sigma$ galaxies. Cluster and field ellipticals follow the same hyperplane, but their ($sigma$,t) distributions within it differ. Nearly all cluster galaxies are old; the field ellipticals span a large range in SSP age. The tight Mg--$sigma$ relations of these ellipticals can be understood as two-dimensional projections of the metallicity hyperplane showing it edge-on; the tightness of these relations does not necessarily imply a narrow range of ages at fixed $sigma$. The relation between [E/Fe] and $sigma$ is consistent with a higher effective yield of Type II SNe elements at higher $sigma$. The Z-plane is harder to explain and may be a powerful clue to star formation in elliptical galaxies if it proves to be general. Present data favor a ``frosting model in which low apparent SSP ages are produced by adding a small frosting of younger stars to an older base population. If the frosting abundances are close to or slightly greater than the base population, simple two-component models run along lines of constant $sigma$ in the Z-plane, as required. This favors star formation from well-mixed pre-enriched gas rather than unmixed low-metallicity gas from an accreted object. (Abridged)
61 - Minjin Kim , Luis C. Ho 2019
To understand the physical origin of the close connection between supermassive black holes and their host galaxies, it is vital to investigate star formation properties in active galaxies. Using a large dataset of nearby type 1 active galactic nuclei (AGNs) with detailed structural decomposition based on high-resolution optical images obtained with the Hubble Space Telescope, we study the correlation between black hole mass and bulge luminosity and the (Kormendy) relation between bulge effective radius and surface brightness. In both relations, the bulges of type 1 AGNs tend to be more luminous than those of inactive galaxies with the same black hole mass or the same bulge size. This suggests that the central regions of AGN host galaxies have characteristically lower mass-to-light ratios than inactive galaxies, most likely due to the presence of a younger stellar population in active systems. In addition, the degree of luminosity excess appears to be proportional to the accretion rate of the AGN, revealing a physical connection between stellar growth and black hole growth. Adopting a simple toy model for the increase of stellar mass and black hole mass, we show that the fraction of young stellar population flattens out toward high accretion rates, possibly reflecting the influence of AGN-driven feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا