ترغب بنشر مسار تعليمي؟ اضغط هنا

HI and Hot Gas in the Outskirts of the M81 Group

144   0   0.0 ( 0 )
 نشر من قبل Martin Bureau
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results are presented from a wide area, high resolution HI synthesis survey of the outer regions of the nearby M81 group, where internal (galactic) and external (group-related) evolution processes can be studied simultaneously in great detail. The survey encompasses the star forming dwarf galaxies M81dwA, UGC4483, and HoII, where evidence of ram pressure stripping was recently discovered. The data do not reveal any intergalactic HI, but the outer parts of HoII are reminiscent of tidal tails. We argue however that those structures are equally consistent with the latest ram pressure models including cooling. The case for a hot intergalactic medium in this poor, spiral-only group is thus still open. The survey also puts tight constraints on possible counterparts to the local high velocity cloud population in an external group, reaching a 3 sigma column density of 10^19 atom/cm^2 and a 6 sigma limiting mass of 1.5x10^5 M_sun.



قيم البحث

اقرأ أيضاً

132 - P. J. Boyce 2001
Results are presented of the first blind HI survey of the M81 group of galaxies. The data were taken as part of the HI Jodrell All Sky Survey (HIJASS). The survey reveals several new aspects to the complex morphology of the HI distribution in the gro up. All four of the known dwarf irregular (dIrr) galaxies close to M81 can be unambiguously seen in the HIJASS data. Each forms part of the complex tidal structure in the area. We suggest that at least three of these galaxies may have formed recently from the tidal debris in which they are embedded. The structure connecting M81 to NGC2976 is revealed as a single tidal bridge of mass approx. 2.1 x 10^8 Msol and projected spatial extent approx. 80 kpc. Two `spurs of HI projecting from the M81 complex to lower declinations are traced over a considerably larger spatial and velocity extent than by previous surveys. The dwarf elliptical (dE) galaxies BK5N and Kar 64 lie at the spatial extremity of one of these features and appear to be associated with it. We suggest that these may be the remnants of dIrrs which has been stripped of gas and transmuted into dEs by close gravitational encounters with NGC3077. The nucleated dE galaxy Kar 61 is unambiguously detected in HI for the first time and has an HI mass of approx.10^8 Msol, further confirming it as a dE/dIrr transitional object. HIJASS has revealed one new possible group member, HIJASS J1021+6842. This object contains approx. 2 x 10^7 Msol of HI and lies approx.105arcmin from IC2574. It has no optical counterpart on the Digital Sky Survey.
108 - A. Bosma 2016
The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tens ion between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current $rm Lambda$ cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.
139 - F. Walter , J. Cannon , H. Roussel 2007
[abridged] We present observations of the dust and atomic gas phase in seven dwarf irregular galaxies of the M81 group from the SINGS and THINGS surveys. The Spitzer observations provide a first glimpse of the nature of the non-atomic ISM in these me tal-poor (Z~0.1 Z_sun), quiescent (SFR~0.001-0.1 M_sun/yr) dwarf galaxies. Dust emission is detected in five out of the seven targets. Most detected dust emission is restricted to HI column densities >1x10^21 cm^-2. Spitzer spectroscopy of two regions in the brightest galaxies (IC 2574 and Holmberg II) show distinctly different spectral shapes. The spectrum of IC 2574 shows aromatic features that are less luminous (relative to the FIR luminosity) compared to an average SINGS spiral galaxy by a factor of ~7 . The aromatic features in Holmberg~II (which has only a slightly lower gas-phase metallicity) are fainter than in IC 2574 by an order of magnitude. This result emphazises that the strength of the aromatic features is not a simple linear function of metallicity. We estimate dust masses of ~10^4-10^6 M_sun for the M81 dwarf galaxies, resulting in an average dust--to--gas ratio (M_dust/M_HI) of ~3x10^-4 (1.5x10^-3 if only the HI that is associated with dust emission is considered); this is an order of magnitude lower than the typical value derived for the SINGS spirals. The dwarf galaxies are underluminous per unit star formation rate at 70um as compared to the more massive galaxies in SINGS by a factor of ~2. However, the average 70um/160um ratio in the sample dwarf galaxies is higher than what is found in the other galaxies of the SINGS sample. This can be explained by a combination of a lower dust content in conjunction with a higher dust temperature in the dwarfs.
98 - Sowgat Muzahid 2017
We report on the detection of three strong HI absorbers originating in the outskirts (i.e., impact parameter, $rho_{rm cl} approx (1.6-4.7) r_{500}$) of three massive ($M_{500}sim3times10^{14} M_{odot}$) clusters of galaxies at redshift $z_{rm cl} ap prox 0.46$, in the $Hubble Space Telescope$ Cosmic Origins Spectrograph ($HST$/COS) spectra of 3 background UV-bright quasars. These clusters were discovered by the 2500 deg$^2$ South Pole Telescope Sunyaev$-$Zeldovich (SZ) effect survey. All three COS spectra show partial Lyman limit absorber with $N(HI) > 10^{16.5} rm cm^{-2}$ near the photometric redshifts ($|Delta z/(1+z)| approx 0.03$) of the clusters. The compound probability of random occurrence of all three absorbers is $<0.02$%, indicating that the absorbers are most likely related to the targeted clusters. We find that the outskirts of these SZ-selected clusters are remarkably rich in cool gas compared to existing observations of other clusters in the literature. The effective Doppler parameters of the Lyman series lines, obtained using single cloud curve-of-growth (COG) analysis, suggest a non-thermal/turbulent velocity of a few $times10 rm km s^{-1}$ in the absorbing gas. We emphasize the need for uniform galaxy surveys around these fields and for more UV observations of QSO-cluster pairs in general in order to improve the statistics and gain further insights into the unexplored territory of the largest collapsed cosmic structures.
153 - F. Bigiel , A. Leroy , M. Seibert 2010
We compare sensitive HI data from The HI Nearby Galaxy Survey (THINGS) and deep far UV (FUV) data from GALEX in the outer disk of M83. The FUV and HI maps show a stunning spatial correlation out to almost 4 optical radii (r25), roughly the extent of our maps. This underscores that HI traces the gas reservoir for outer disk star formation and it implies that massive (at least low level) star formation proceeds almost everywhere HI is observed. Whereas the average FUV intensity decreases steadily with increasing radius before leveling off at ~1.7 r25, the decline in HI surface density is more subtle. Low HI columns (<2 M_solar/pc^2) contribute most of the mass in the outer disk, which is not the case within r25. The time for star formation to consume the available HI, inferred from the ratio of HI to FUV intensity, rises with increasing radius before leveling off at ~100 Gyr, i.e., many Hubble times, near ~1.7 r25. Assuming the relatively short H2 depletion times observed in the inner parts of galaxies hold in outer disks, the conversion of HI into bound, molecular clouds seems to limit star formation in outer galaxy disks. The long consumption times suggest that most of the extended HI observed in M83 will not be consumed by in situ star formation. However, even these low star formation rates are enough to expect moderate chemical enrichment in a closed outer disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا