ﻻ يوجد ملخص باللغة العربية
We present mid-infrared spectro-imaging (5 - 16 microns) observations of the infrared luminous interacting system Arp 299 (=Mrk171 =IC694+NGC3690) obtained with the ISOCAM instrument aboard ISO. Our observations show that nearly 40% of the total emission at 7 and 15 microns is diffuse, originating from the interacting disks of the galaxies. Moreover, they indicate the presence of large amounts of hot dust in the main infrared sources of the system and large extinctions toward the nuclei. While the observed spectra have an overall similar shape, mainly composed of Unidentified Infrared Bands (UIB) in the short wavelength domain, a strong continuum at ~ 13 microns and a deep silicate absorption band at 10 microns, their differences reveal the varying physical conditions of each component. For each source, the spectral energy distribution (SED) can be reproduced by a linear combination of a UIB canonical spectral template and a hot dust continuum due to a 230-300 K black body, after independently applying an extinction correction to both of them. We find that the UIB extinction does not vary much throughout the system (A_V ~ 5 mag) suggesting that most UIBs originate from less enshrouded regions. IC694 appears to dominate the infrared emission of the system and our observations support the interpretation of a deeply embedded nuclear starburst located behind an absorption of about 40 mag. The central region of NGC3690 displays a hard radiation field characterized by a [NeIII]/[NeII] ratio > 1.8. It also hosts a strong continuum from 5 to 16 microns which can be explained as thermal emission from a deeply embedded (A_V ~ 60 mag) compact source, consistent with the mid-infrared signature of an active galactic nucleus (AGN), and in agreement with recent X-ray findings.
We report results of a Chandra observation of the X-ray luminous star-forming galaxy Arp299 (NGC3690/IC694). We detect 18 discrete X-ray sources with luminosities above ~10^39 ergs (0.5-8.0 keV band), which contribute ~40% of the total galactic emiss
Understanding the heating and cooling mechanisms in nearby (Ultra) luminous infrared galaxies can give us insight into the driving mechanisms in their more distant counterparts. Molecular emission lines play a crucial role in cooling excited gas, and
We present an investigation of the dust-enshrouded activity in a sample of X-ray selected clusters drawn from the XMM-LSS survey in the redshift range z ~ 0.05 - 1.05. By taking advantage of the contiguous mid-IR coverage of the XMM-LSS field by the
Star-forming galaxies are huge reservoirs of cosmic rays (CRs) and these CRs convert a significant fraction of their energy into $gamma$-rays by colliding with the interstellar medium (ISM). Several nearby star-forming galaxies have been detected in
We present partial results from our monitoring of the nuclear region of the starburst galaxy IC 694 (=Arp 299-A) at radio wavelengths, aimed at discovering recently exploded CCSNe, as well as to determine their rate of explosion, which carries crucia