ترغب بنشر مسار تعليمي؟ اضغط هنا

HST/STIS High Resolution Echelle Spectra of alpha Centauri A (G2 V)

71   0   0.0 ( 0 )
 نشر من قبل Isabella Pagano
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe and analyze HST/STIS observations of the G2 V star alpha Centauri A (alpha Cen A, HD 128620), a star similar to the Sun. The high resolution echelle spectra obtained with the E140H and E230H gratings cover the complete spectral range 1133-3150 Angstrom with a resolution of 2.6 km/s, an absolute flux calibration accurate to +/-5%, and an absolute wavelength accuracy of 0.6-1.3 km/s. We present here a study of the E140H spectrum covering the 1140-1670 Angstrom spectral range, which includes 671 emission lines representing 37 different ions and the molecules CO and H_2. For alpha Cen A and the quiet and active Sun, we intercompare the redshifts, nonthermal line widths, and parameters of two Gaussian representations of transition region lines (e.g., Si IV, C IV), infer the electron density from the O IV intersystem lines, and compare their differential emission measure distributions. One purpose of this study is to compare the alpha Cen A and solar UV spectra to determine how the atmosphere and heating processes in alpha Cen A differ from the Sun as a result of the small differences in gravity, age, and chemical composition of the two stars. A second purpose is to provide an excellent high resolution UV spectrum of a solar-like star that can serve as a proxy for the Sun observed as a point source when comparing other stars to the Sun.

قيم البحث

اقرأ أيضاً

97 - A. Roberge 2000
High resolution FUV echelle spectra showing absorption features arising from CI and CO gas in the Beta Pictoris circumstellar (CS) disk were obtained on 1997 December 6 and 19 using the Space Telescope Imaging Spectrograph (STIS). An unsaturated spin -forbidden line of CI at 1613.376 A not previously seen in spectra of Beta Pictoris was detected, allowing for an improved determination of the column density of CI at zero velocity relative to the star (the stable component), N = (2-4) x 10^{16} cm^{-2}. Variable components with multiple velocities, which are the signatures of infalling bodies in the Beta Pictoris CS disk, are observed in the CI 1561 A and 1657 A multiplets. Also seen for the first time were two lines arising from the metastable singlet D level of carbon, at 1931 A and 1463 A The results of analysis of the CO A-X (0-0), (1-0), and (2-0) bands are presented, including the bands arising from {13}^CO, with much better precision than has previously been possible, due to the very high resolution provided by the STIS echelle gratings. Only stable CO gas is observed, with a column density N(CO) = (6.3 +/- 0.3) x 10^{14} cm{-2}. An unusual ratio of the column densities of {12}^CO to {13}^CO is found (R = 15 +/- 2). The large difference between the column densities of CI and CO indicates that photodissociation of CO is not the primary source of CI gas in the disk, contrary to previous suggestion.
We present a census of z(abs) < 2, intrinsic (those showing partial coverage) and associated [z(abs) ~ z(em)] quasar absorption-line systems detected in the Hubble Space Telescope archive of Space Telescope Imaging Spectrograph echelle spectra. This work complements the Misawa et al. (2007) survey of 2 < z(em) < 4 quasars that selects systems using similar techniques. We confirm the existence of so-called strong N V intrinsic systems (where the equivalent width of H I Ly alpha is small compared to N V 1238) presented in that work, but find no convincing cases of strong C IV intrinsic systems at low redshift/luminosity. Moreover, we also report on the existence of strong O VI systems. From a comparison of partial coverage results as a function of ion, we conclude that systems selected by the N V ion have the highest probability of being intrinsic. By contrast, the C IV and O VI ions are poor selectors. Of the 30 O VI systems tested, only two of the systems in the spectrum on 3C 351 show convincing evidence for partial coverage. However, there is a 3-sigma excess in the number of absorbers near the quasar redshift (|Delta v| <= 5000 km/s) over absorbers at large redshift differences. In at least two cases, the associated O VI systems are known not to arise close to the accretion disk of the quasar.
We have produced a catalog of line identifications and equivalent width measurements for all absorption features in eight ultraviolet echelle quasar spectra. These spectra were selected as having the highest signal-to-noise among the HST/STIS spectra obtained with the E230M grating. We identify 56 metal-line systems toward the eight quasars, and present plots of detected transitions, aligned in velocity-space. We found that about 1/4 - 1/3 of the features in the Lya forest region, redward of the incidence of the Lyb forest, are metal lines. High ionization transitions are common. We see both O VI and C IV in 88 - 90% of the metal-line systems for which the spectra cover the expected wavelength. Si III is seen in 58%, while low ionization absorption in C II, Si II, and/or Al II is detected in 50% of the systems for which they are covered. This catalog will facilitate future studies of the Lya forest and of metal-line systems of various types.
We present preliminary results on the low-redshift Lyman alpha forest as based on STIS spectra of 3C 273. A total of 121 intergalactic Lyman alpha-absorbing systems were detected, of which 60 are above the 3.5 sigma completness limit, log N(HI)~12.3. The median Doppler parameter, b=27 km/s, is similar to that seen at high redshift. However the distribution of HI column densities (dN/dN(HI) propto N(HI)^-beta) has a steeper slope, beta = 2.02 +- 0.21, than is seen at high redshift. Overall, the observed N(HI)-b distribution is consistent with that derived from a Lambda CDM hydrodynamic simulation.
In this paper we describe Kea a new spectroscopic fitting method to derive stellar parameters from moderate to low signal/noise, high-resolution spectra. We developed this new tool to analyze the massive data set of the Kepler mission reconnaissance spectra that we have obtained at McDonald Observatory. We use Kea to determine effective temperatures (T_eff), metallicity ([Fe/H]), surface gravity (log g) and projected rotational velocity (v sin i). Kea compares the observations to a large library of synthetic spectra that covers a wide range of different T_eff, [Fe/H] and log g values. We calibrated Kea on observations of well-characterized standard stars (the Kepler field platinum sample) which range in T_eff from 5000 to 6500 K, in [Fe/H] from -0.5 to +0.4 dex and in log g from 3.2 to 4.6 dex. We then compared the Kea results from reconnaissance spectra of 45 KOIs (Kepler Object of Interest) to stellar parameters derived from higher signal/noise spectra obtained with Keck/HIRES. We find typical uncertainties of 100 K in T_eff, 0.12 dex in [Fe/H] and 0.18 dex in log g.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا