ﻻ يوجد ملخص باللغة العربية
We report on measurements of the cosmological constant, Lambda, and the redshift space distortion parameter beta=Omega_m^0.6/b, based on an analysis of the QSO power spectrum parallel and perpendicular to the observers line of sight, from the final catalogue of the 2dF QSO Redshift Survey. We derive a joint Lambda - beta constraint from the geometric and redshift-space distortions in the power spectrum. By combining this result with a second constraint based on mass clustering evolution, we break this degeneracy and obtain strong constraints on both parameters. Assuming a flat cosmology and a Lambda cosmology r(z) function to convert from redshift into comoving distance, we find best fit values of Omega_Lambda=0.71^{+0.09}_{-0.17} and beta(z~1.4)=0.45^{+0.09}_{-0.11}. Assuming instead an EdS cosmology r(z) we find that the best fit model obtained, with Omega_Lambda=0.64^{+0.11}_{-0.16} and beta(z~1.4)=0.40^{+0.09}_{-0.09}, is consistent with the Lambda r(z) results, and inconsistent with a Lambda=0 flat cosmology at over 95 per cent confidence.
We present a power spectrum analysis of the final 2dF QSO Redshift Survey catalogue containing 22652 QSOs. Utilising the huge volume probed by the QSOs, we can accurately measure power out to scales of ~500Mpc and derive new constraints, at z~1.4, on
We present clustering results from the 2dF QSO Redshift Survey (2QZ) which currently contains over 20,000 QSOs at z<3. The two-point correlation function of QSOs averaged over the entire survey (<z>~1.5) is found to be similar to that of local galaxi
With ~10000 QSO redshifts, the 2dF QSO Redshift Survey (2QZ) is already the biggest individual QSO survey. The aim for the survey is to have ~25000 QSO redshifts, providing an order of magnitude increase in QSO clustering statistics. We first describ
We present a catalogue comprising over 10000 QSOs covering an effective area of 289.6 sq. degrees, based on spectroscopic observations with the 2-degree Field instrument at the Anglo-Australian Telescope. This catalogue forms the first release of the
We analyse the redshift-space (z-space) distortions of QSO clustering in the 2dF QSO Redshift Survey (2QZ). To interpret the z-space correlation function, xi(sigma,pi), we require an accurate model for the QSO real-space correlation function, xi(r).