ﻻ يوجد ملخص باللغة العربية
We derive the luminosity function of high-redshift Lyman alpha emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near 9 clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5<z<6.7. Eleven emission-line candidates were located in the range 2.2<z<5.6 whose identification we justify as Lyman alpha, in most cases via further spectroscopic observations. The selection function we constructed for our survey takes into account our varying intrinsic Lyman alpha line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyman alpha luminosity function to unprecedented limits of 10^40 erg/s, corresponding to a star-formation rate of 0.01 Msun/yr. Our cumulative z=5 Lyman alpha luminosity function is consistent with a power law form, n(>L) proportional to L^-1 over 10^41 to 10^42.5 erg/s. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation.
Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging sear
We report results of a deep wide-field narrowband survey for redshift z~5.7 Ly alpha emitters carried out with SuprimeCam on Subaru 8.3-m telescope. Deep narrowband imaging of the SSA22 field through a 120 A bandpass filter centered at 8150 A was com
The Lya emission has been observed from galaxies over a redshift span z ~ 0 - 8.6. However, the evolution of high-redshift Lya emitters (LAEs), and the link between these populations and local galaxies, remain poorly understood. Here, we investigate
We present semi-analytical models of high redshift Lyman-{alpha} emitters (LAEs) in order to constrain the star formation efficiency in those galaxies. Our supernova feedback induced star formation model along with Sheth-Tormman halo mass function co
Context: Many current and future surveys aim to detect the highest redshift (z >~ 7) sources through their Lyman-alpha (Ly-alpha) emission, using the narrow-band imaging method. However, to date the surveys have only yielded non-detections and upper