ترغب بنشر مسار تعليمي؟ اضغط هنا

X-raying Active Galaxies Found and Missed by the Sloan Digital Sky Survey

60   0   0.0 ( 0 )
 نشر من قبل Niel Brandt
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W.N. Brandt




اسأل ChatGPT حول البحث

Current X-ray observatories, archival X-ray data, and the Sloan Digital Sky Survey (SDSS) represent a powerful combination for addressing key questions about active galactic nuclei (AGN). We describe a few selected issues at the forefront of X-ray AGN research and the relevance of the SDSS to them. Bulk X-ray/SDSS AGN investigations, X-ray weak AGN, red AGN, hard X-ray selected AGN, high-redshift AGN demography, and future prospects are all briefly discussed.



قيم البحث

اقرأ أيضاً

367 - H.C. Harris , E. Gates , G. Gyuk 2008
We identify seven new ultracool white dwarfs discovered in the Sloan Digital Sky Survey (SDSS). The SDSS photometry, spectra, and proper motions are presented, and additional BVRI data are given for these and other previously discovered ultracool whi te dwarfs. The observed colors span a remarkably wide range, qualitatively similar to colors predicted by models for very cool white dwarfs. One of the new stars (SDSS J1251+44) exhibits strong collision-induced absorption (CIA) in its spectra, while the spectra and colors of the other six are consistent with mild CIA. Another of the new discoveries (SDSS J2239+00A) is part of a binary system -- its companion is also a cool white dwarf, and other data indicate that the companion exhibits an infrared flux deficiency, making this the first binary system composed of two CIA white dwarfs. A third discovery (SDSS J0310-00) has weak Balmer emission lines. The proper motions of all seven stars are consistent with membership in the disk or thick disk.
527 - G. Stasinska 2008
The classification of galaxies as star forming or active is generally done in the ([O III]/Hbeta, [N II]/Halpha) plane. The Sloan Digital Sky Survey (SDSS) has revealed that, in this plane, the distribution of galaxies looks like the two wings of a s eagull. Galaxies in the right wing are referred to as Seyfert/LINERs, leading to the idea that non-stellar activity in galaxies is a very common phenomenon. Here, we argue that a large fraction of the systems in the right wing could actually be galaxies which stopped forming stars. The ionization in these retired galaxies would be produced by hot post-AGB stars and white dwarfs. Our argumentation is based on a stellar population analysis of the galaxies via our STARLIGHT code and on photoionization models using the Lyman continuum radiation predicted for this population. The proportion of LINER galaxies that can be explained in such a way is however uncertain. We further show how observational selection effects account for the shape of the right wing. Our study suggests that nuclear activity may not be as common as thought. If retired galaxies do explain a large part of the seagulls right wing, some of the work concerning nuclear activity in galaxies, as inferred from SDSS data, will have to be revised.
170 - Nelson D. Padilla 2008
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41+-0.03 for Mr ~ -18 ellipticals, and 0.76+-0.04 for Mr ~-22.5 ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth. There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS-DR6 are consistent with flat disks with a mean and dispersion of thickness to diameter ratio of (21+-2)%, and a face-on ellipticity, e, of ln(e)=-2.33+-0.79. Not including the effects of dust in the model leads to disks that are systematically rounder by up to 60%. More luminous spiral galaxies tend to have thicker and rounder disks than lower-luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies. The marginalised value of the edge-on r-band dust extinction E_0 in spiral galaxies is E_0 ~ 0.45 magnitudes for galaxies of median colours, increasing to E_0=1 magnitudes for g-r>0.9 and E_0=1.9 for the luminous and most compact galaxies, with half-light radii <2kpc/h.
163 - A.J. Barth , J.E. Greene , L.C. Ho 2008
(Abridged) We describe a sample of low-mass Seyfert 2 galaxies selected from the Sloan Digital Sky Survey, having a median absolute magnitude of M_g = -19.0 mag. These galaxies are Type 2 counterparts to the Seyfert 1 galaxies with intermediate-mass black holes identified by Greene & Ho (2004). Spectra obtained with the Echellette Spectrograph and Imager at the Keck Observatory are used to determine the central stellar velocity dispersions and to examine the emission-line properties. Overall, the stellar velocity dispersions are low (40-90 km/s), and we find 12 objects having sigma < 60 km/s, a range where very few Seyfert 2 galaxies were previously known. The sample follows the correlation between stellar velocity dispersion and FWHM([OIII]) seen in more massive Seyfert galaxies, indicating that the narrow-line FWHM values are largely determined by virial motion of gas in the central regions of the host galaxies. Using estimates of the black hole masses and AGN bolometric luminosities, we find that these galaxies are typically radiating at a high fraction of their Eddington rate, with a median L_bol/L_Edd = 0.4. We identify one galaxy, SDSS J110912.40+612346.7, as a Type 2 analog of the nearby dwarf Seyfert 1 galaxy NGC 4395, with a nearly identical narrow-line spectrum and a dwarf spiral host of only M_g = -16.8 mag. Forthcoming observations of this sample, including X-ray and mid-infrared spectroscopy, can provide new tests of the obscuring torus model for active galaxies at low luminosities.
Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGN to b e composed mainly of stellar light and non-variable on the time-scales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multi-epoch data in the Sloan Digital Sky Survey (SDSS) Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of ~700 days) covering a wavelength range of 3900-8900 angstrom. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of two. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average -- the spectroscopic variability of the continuum is 0.07+/-0.26 mag in the g band and, for the emission-line ratios log10([NII]/Halpha) and log10([OIII]/Hbeta), the variability is 0.02+/-0.03 dex and 0.06+/-0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of varying spectral component, presumably related to AGN activities, and that of host galaxy to be ~30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars and quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا