ترغب بنشر مسار تعليمي؟ اضغط هنا

Arecibo 430 MHz Pulsar Polarimetry: Faraday Rotation Measures and Morphological Classifications

91   0   0.0 ( 0 )
 نشر من قبل Joel Weisberg
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured Faraday Rotation Measures (RMs) at Arecibo Observatory for 36 pulsars, 17 of them new. We combine these and earlier measurements to study the galactic magnetic field and its possible temporal variations. Many RM values have changed significantly on several-year timescales, but these variations probably do not reflect interstellar magnetic field changes. By studying the distribution of pulsar RMs near the plane in conjunction with the new NE2001 electron density model, we note the following structures in the first galactic longitude quadrant: (1) The local field reversal can be traced as a null in RM in a 0.5-kpc wide strip interior to the Solar Circle, extending ~7 kpc around the Galaxy. (2) Steadily increasing RMs in a 1-kpc wide strip interior to the local field reversal, and also in the wedge bounded by 42<l<52 deg, indicate that the large-scale field is approximately steady from the local reversal in to the Sagittarius arm. (3) The RMs in the 1-kpc wide strip interior to the Sagittarius arm indicate another field reversal in this strip. (4) The RMs in a final 1-kpc wide interior strip, straddling the Scutum arm, also support a second field reversal interior to the Sun,between the Sagittarius and Scutum arms. (5) Exterior to the nearby reversal, RMs from 60<l<78 deg show evidence for two reversals, on the near and far side of the Perseus arm. (6) In general, the maxima in the large-scale fields tend to lie along the spiral arms, while the field minima tend to be found between them. We have also determined polarized profiles of 48 pulsars at 430 MHz. We present morphological pulse profile classifications of the pulsars, based on our new measurements and previously published data.



قيم البحث

اقرأ أيضاً

120 - C. Ng , A. Pandhi , A. Naidu 2020
Using commissioning data from the first year of operation of the Canadian Hydrogen Intensity Mapping Experiments (CHIME) Pulsar backend system, we conduct a systematic analysis of the Faraday Rotation Measure (RM) of the northern hemisphere pulsars d etected by CHIME. We present 55 new RMs as well as obtain improved RM uncertainties for 25 further pulsars. CHIMEs low observing frequency and wide bandwidth between 400-800 MHz contribute to the precision of our measurements, whereas the high cadence observation provide extremely high signal-to-noise co-added data. Our results represent a significant increase of the pulsar RM census, particularly regarding the northern hemisphere. These new RMs are for sources that are located in the Galactic plane out to 10 kpc, as well as off the plane to a scale height of ~16 kpc. This improved knowledge of the Faraday sky will contribute to future Galactic large-scale magnetic structure and ionosphere modelling.
We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently , isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range $23.5 - 86.6$ pc cm$^{-3}$ and periods in the range $0.172 - 3.901$ s. The new pulsars have DMs in the range $23.6 - 133.3$ pc cm$^{-3}$ and periods in the range $1.249 - 5.012$ s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of $10^5$ day$^{-1}$ for bursts with a width of 10 ms and flux density $gtrsim 83$ mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models.
We present a catalog of Faraday rotation measures (RMs) and redshifts for 4003 extragalactic radio sources detected at 1.4 GHz, derived by identifying optical counterparts and spectroscopic redshifts for linearly polarized radio sources from the NRAO VLA Sky Survey. This catalog is more than an order of magnitude larger than any previous sample of RM vs. redshift, and covers the redshift range 0 < z < 5.3 ; the median redshift of the catalog is z = 0.70, and there are more than 1500 sources at redshifts z > 1. For 3650 of these sources at Galactic latitudes |b| >= 20 degrees, we present a second catalog in which we have corrected for the foreground Faraday rotation of the Milky Way, resulting in an estimate of the residual rotation measure (RRM) that aims to isolate the contribution from extragalactic magnetic fields. We find no significant evolution of RRM with redshift, but observe a strong anti-correlation between RRM and fractional polarization, p, that we argue is the result of beam depolarization from small-scale fluctuations in the foreground magnetic field or electron density. We suggest that the observed variance in RRM and the anti-correlation of RRM with p both require a population of magnetized intervening objects that lie outside the Milky Way but in the foreground to the emitting sources.
We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of -1 to 28 degrees, excluding the region within 5 degrees of the Galactic plane, wher e high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 us sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsars with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include three millisecond pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28 to 38 degrees. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.
121 - X. H. Sun 2014
(abridged) We run a Faraday structure determination data challenge to benchmark the currently available algorithms including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling and $QU$-fitting. The fre quency set is similar to POSSUM/GALFACTS with a 300 MHz bandwidth from 1.1 to 1.4 GHz. We define three figures of merit motivated by the underlying science: a) an average RM weighted by polarized intensity, RMwtd, b) the separation $Deltaphi$ of two Faraday components and c) the reduced chi-squared. Based on the current test data of signal to noise ratio of about 32, we find that: (1) When only one Faraday thin component is present, most methods perform as expected, with occasional failures where two components are incorrectly found; (2) For two Faraday thin components, QU-fitting routines perform the best, with errors close to the theoretical ones for RMwtd, but with significantly higher errors for $Deltaphi$. All other methods including standard Faraday synthesis frequently identify only one component when $Deltaphi$ is below or near the width of the Faraday point spread function; (3) No methods, as currently implemented, work well for Faraday thick components due to the narrow bandwidth; (4) There exist combinations of two Faraday components which produce a large range of acceptable fits and hence large uncertainties in the derived single RMs; in these cases, different RMs lead to the same Q, U behavior, so no method can recover a unique input model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا