ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB 030227: the first multiwavelength afterglow of an INTEGRAL GRB

65   0   0.0 ( 0 )
 نشر من قبل Javier Gorosabel
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present multiwavelength observations of a gamma-ray burst detected by INTEGRAL (GRB 030227) between 5.3 hours and ~1.7 days after the event. Here we report the discovery of a dim optical afterglow (OA) that would not have been detected by many previous searches due to its faintess (R~23). This OA was seen to decline following a power law decay with index Alpha_R= -0.95 +/- 0.16. The spectral index Beta_opt/NIR yielded -1.25 +/- 0.14. These values may be explained by a relativistic expansion of a fireball (with p = 2.0) in the cooling regime. We also find evidence for inverse Compton scattering in X-rays.

قيم البحث

اقرأ أيضاً

61 - S.Mereghetti , D.Gotz , A.Tiengo 2003
We present INTEGRAL and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB030227, the first GRB for which the quick localization obtained with the INTEGRAL Burst Alert System (IBAS) has led to the discovery of X-r ay and optical afterglows. GRB030227 had a duration of about 20 s and a peak flux of 1.1 photons cm^-2 s^-1 in the 20-200 keV energy range. The time averaged spectrum can be fit by a single power law with photon index about 2 and we find some evidence for a hard to soft spectral evolution. The X-ray afterglow has been detected starting only 8 hours after the prompt emission, with a 0.2-10 keV flux decreasing as t^-1 from 1.3x10e-12 to 5x10e-13 erg cm^-2 s^-1. The afterglow spectrum is well described by a power law with photon index 1.94+/-0.05 modified by a redshifted neutral absorber with column density of several 10e22 cm^-2. A possible emission line at 1.67 keV could be due to Fe for a redshift z=3, consistent with the value inferred from the absorption.
113 - D. Watson 2003
Strong, delayed X-ray line emission is detected in the afterglow of GRB 030227, appearing near the end of the XMM-Newton observation, nearly twenty hours after the burst. The observed flux in the lines, not simply the equivalent width, sharply increa ses from an undetectable level (<1.7e-14 erg/cm^2/s, 3 sigma) to 4.1e-14 erg/cm^2/s in the final 9.7 ks. The line emission alone has nearly twice as many detected photons as any previous detection of X-ray lines. The lines correspond well to hydrogen and/or helium-like emission from Mg, Si, S, Ar and Ca at a redshift z=1.39. There is no evidence for Fe, Co or Ni--the ultimate iron abundance must be less than a tenth that of the lighter metals. If the supernova and GRB events are nearly simultaneous there must be continuing, sporadic power output after the GRB of a luminosity >~5e46 erg/s, exceeding all but the most powerful quasars.
We present the extensive follow-up campaign on the afterglow of GRB 110715A at 17 different wavelengths, from X-ray to radio bands, starting 81 seconds after the burst and extending up to 74 days later. We performed for the first time a GRB afterglow observation with the ALMA observatory. We find that the afterglow of GRB 110715A is very bright at optical and radio wavelengths. We use optical and near infrared spectroscopy to provide further information about the progenitors environment and its host galaxy. The spectrum shows weak absorption features at a redshift z = 0.8225, which reveal a host galaxy environment with low ionization, column density and dynamical activity. Late deep imaging shows a very faint galaxy, consistent with the spectroscopic results. The broadband afterglow emission is modelled with synchrotron radiation using a numerical algorithm and we determine the best fit parameters using Bayesian inference in order to constrain the physical parameters of the jet and the medium in which the relativistic shock propagates. We fitted our data with a variety of models, including different density profiles and energy injections. Although the general behaviour can be roughly described by these models, none of them are able to fully explain all data points simultaneously. GRB 110715A shows the complexity of reproducing extensive multi-wavelength broadband afterglow observations, and the need of good sampling in wavelength and time and more complex models to accurately constrain the physics of GRB afterglows.
We report on the BeppoSAX data analysis of the afterglow of Gamma-Ray Burst (GRB) 990123, one of the brightest GRBs detected by BeppoSAX. Mainly due to its exceptional brightness, this is the only source for which the Wide Field Cameras have allowed an early detection of the X-ray afterglow between about 20 and 60 min after the GRB trigger. Besides, again for the first time, high-energy emission from the afterglow was detected up to 60 keV. For the X-ray afterglow we found a power-law decay with index alpha = 1.46 +/- 0.04; the spectrum has a power-law shape with photon index Gamma about 1.9. The backward extrapolation of the afterglow decay smoothly reconnects with the late GRB emission, thus suggesting that both emissions are produced by the same phenomenon. An extensive set of multiwavelength observations for the GRB 990123 afterglow made during the BeppoSAX pointing was collected from the literature. The hard X-ray to radio range coverage allowed to construct a spectral flux distribution and to perform an analysis of the GRB afterglow in the context of the fireball model. We also report the results of temporal and spectral analysis of an X-ray source serendipitously observed about 22 arcmin north of the GRB afterglow, along with the optical spectroscopy of its possible counterpart to establish the nature of this source.
We report the discovery of the optical and radio afterglow of GRB 010921, the first gamma-ray burst afterglow to be found from a localization by the High Energy Transient Explorer (HETE) satellite. We present optical spectroscopy of the host galaxy w hich we find to be a dusty and apparently normal star-forming galaxy at z = 0.451. The unusually steep optical spectral slope of the afterglow can be explained by heavy extinction, A_V > 0.5 mag, along the line of sight to the GRB. Dust with similar A_V for the the host galaxy as a whole appears to be required by the measurement of a Balmer decrement in the spectrum of the host galaxy. Thanks to the low redshift, continued observations of the afterglow will enable the strongest constraints, to date, on the existence of a possible underlying supernova.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا