ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of X-ray absorption lines from the low-mass X-ray binaries 4U 1916-053 and X 1254-069 with XMM-Newton

104   0   0.0 ( 0 )
 نشر من قبل L. Boirin
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Boirin




اسأل ChatGPT حول البحث

We report the discovery of narrow X-ray absorption features from the two dipping low-mass X-ray binary 4U 1916-053 and X 1254-690 during XMM-Newton observations. The features detected are identified with resonant scattering absorption lines of highly ionized iron (Fe XXV and Fe XXVI). Resonant absorption features are now observed in a growing number of low-mass X-ray binaries (LMXBs): the two superluminal jet sources GRS 1915+105 and GRO J1655-40, the bright LMXB GX 13+1 and the four dipping sources MXB 1658-298, X 1624-490, 4U 1916-053 and X 1254-690. The early hypothesis that their origin could be related to the presence of superluminal jets is thus ruled out. Ionized absorption features may be common characteristics of accreting systems. Furthermore, their presence may depend on viewing angle, as suggested by their detection in dippers which are viewed close to the disk plane, and by the fact that GRS 1915+105, GRO J1655-40 and GX 13+1, although not dippers, are suspected to be also viewed at high inclination.

قيم البحث

اقرأ أيضاً

100 - L. Boirin 2004
We report the discovery of narrow Fe XXV and Fe XXVI K alpha X-ray absorption lines at 6.65 and 6.95 keV in the persistent emission of the dipping low-mass X-ray binary (LMXB) XB 1916-053 during an XMM-Newton observation performed in September 2002. In addition, there is marginal evidence for absorption features at 1.48 keV, 2.67 kev, 7.82 keV and 8.29 keV consistent with Mg XII, S XVI, Ni XXVII K alpha and Fe XXVI K beta transitions, respectively. Such absorption lines from highly ionized ions are now observed in a number of high inclination (ie. close to edge-on) LMXBs, such as XB 1916-053, where the inclination is estimated to be between 60-80 degrees. This, together with the lack of any orbital phase dependence of the features (except during dips), suggests that the highly ionized plasma responsible for the absorption lines is located in a cylindrical geometry around the compact object. Using the ratio of Fe XXV and Fe XXVI column densities, we estimate the photo-ionization parameter of the absorbing material to be 10^{3.92} erg cm s^{-1}. Only the Fe XXV line is observed during dipping intervals and the upper-limits to the Fe XXVI column density are consistent with a decrease in the amount of ionization during dipping intervals. This implies the presence of cooler material in the line of sight during dipping. We also report the discovery of a 0.98 keV absorption edge in the persistent emission spectrum. The edge energy decreases to 0.87 keV during deep dipping intervals. The detected feature may result from edges of moderately ionized Ne and/or Fe with the average ionization level decreasing from persistent emission to deep dipping. This is again consistent with the presence of cooler material in the line of sight during dipping.
We report on two XMM-Newton observations of the low-mass X-ray binary X 1254-690. During an XMM-Newton observation of the low-mass X-ray binary in 2001 January a deep X-ray dip was seen while in a second observation one year later no dips were eviden t. The 0.5-10 keV EPIC spectra from both non-dipping intervals are very similar being modeled by a disk-blackbody and a power-law continuum with additional structure around 1 keV and narrow absorption features at 7.0 keV and 8.2 keV which are identified with the K alpha and K beta absorption lines of Fe XXVI. The low-energy structure may be modeled as a 175 eV (sigma) wide emission line at ~0.95 keV. This feature is probably the same structure that was modeled as an absorption edge in an earlier BeppoSAX observation. The absorption line properties show no obvious dependence on orbital phase and are similar in both observations suggesting that the occurrence of such features is not directly related to the presence of dipping activity. Narrow Fe absorption features have been observed from the two superluminal jet sources GRO J1655-40 and GRS 1915+105, and the four low-mass X-ray binaries GX 13+1, MXB 1658-298, X 1624-490 and X 1254-690. Since the latter 3 sources are dipping sources, which are systems viewed close to the accretion disk plane, and the two microquasars are thought to be viewed at an inclination of ~70 degrees, this suggests that these features are more prominent when viewed at high-inclination angles. This, together with the lack of any orbital dependence, implies a cylindrical geometry for the absorbing material.
64 - L. Sidoli 2001
We report the discovery of narrow X-ray absorption lines from the low-mass X-ray binary MXB1659-298 during an XMM-Newton observation in 2001 February. The 7.1 hr orbital cycle is clearly evident with narrow X-ray eclipses preceded by intense dipping activity. A sinusoid-like OM $B$-band modulation with a peak-to-peak modulation of 0.5 magnitude and a minimum coincident with the X-ray eclipse is visible. EPIC and RGS spectra reveal the presence of narrow resonant absorption features identified with OVIII 1s-2p, 1s-3p and 1s-4p, NeX 1s-2p, FeXXV 1s-2p, and FeXXVI 1s-2p transitions, together with a broad Fe emission feature at ~6.5 keV. The EWs of the Fe absorption features show no obvious dependence on orbital phase, even during dipping intervals. Previously, the only X-ray binaries known to exhibit narrow X-ray absorption lines were two superluminal jet sources and it had been suggested that these features are related to the jet formation mechanism. This now appears unlikely, and instead their presence may be related to the viewing angle of the system. The MXB1659-298 0.6--12 keV continuum is modeled using absorbed cutoff power-law and blackbody components. During dips the blackbody is more strongly absorbed than the power-law. The spectral shape of the 3.6% of 0.5--10 keV emission that remains during eclipses is consistent with that during non-dipping intervals.
83 - T. Narita 2003
We report on the long term monitoring of X-ray dips from the ultracompact low-mass X-ray binary (LMXB) XB 1916-053. Roughly one-month interval observations were carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996, during which the sou rce varied between dim, hard states and more luminous, soft states. The dip spectra and dip lightcurves were compared against both the broadband luminosity and the derived mass accretion rate Mdot. The dips spectra could be fitted by an absorbed blackbody plus cut-off power law non-dip spectral model, with additional absorption ranging from 0 to >100 x 10^22 cm^-2. The amount of additional blackbody absorption was found to vary with the source luminosity. Our results are consistent with an obscuration of the inner disk region by a partially ionized outer disk. The size of the corona, derived from the dip ingress times, was found to be ~10^9 cm. The corona size did not correlate with the coronal temperature, but seemed to increase when Mdot also increased. We discuss our findings in the context of an evaporated accretion disk corona model and an ADAF-type model.
The study of X-ray reprocessing is one of the key diagnostic tools to probe the environment in X-ray binary systems. One difficult aspect of studying X-ray reprocessing is the presence of much brighter primary radiation from the compact star together with the reprocessed radiation. In contrast for eclipsing systems, the X-rays we receive during eclipse are only those produced by reprocessing of the emission from the compact star by the surrounding medium. We report results from a spectral study of the X-ray emission during eclipse and outside eclipse (when available) in 9 high mass X-ray binaries (HMXBs) with XMM- Newton EPIC pn to investigate different aspects of the stellar wind in these HMXBs. During eclipse the continuum component of the spectrum is reduced by a factor of $sim$8-237, but the count-rate for 6.4 keV Iron emission line or complex of Iron emission lines in HMXBs are reduced by a smaller factor leading to large equivalent widths of the Iron emission lines. This indicates a large size for the line emission region, comparable to or larger than the companion star in these HMXB systems. However there are significant system to system differences. 4U 1538$-$52, in spite of having a large absorption column density, shows a soft emission component with comparable flux during the eclipse and out-of-eclipse phases. Emission from Hydrogen-like Iron has been observed in LMC X-4 for the first time, in the out-of-eclipse phase in one of the observations. Overall, we find significant differences in the eclipse spectrum of different HMXBs and also in their eclipse spectra against out-of-eclipse spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا