ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests for supernova explosion models: from light curves to X-ray emission of supernova remnants

111   0   0.0 ( 0 )
 نشر من قبل Elena Sorokina
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The successful theoretical supernova explosion models should be able to explain any features of the emission from supernovae at any evolutionary stage. We check several models from two different points of view. With the multi-frequency radiation hydro code STELLA we calculate gamma-ray, bolometric and broad-band UBVI light curves. Then we use the same models to calculate the emission from young supernova remnants. Here we present new plots for gamma-ray luminosity from several SN Ia models and recomputations of bolometric and UBVRI light curves of model 13C for SN 1993J.



قيم البحث

اقرأ أيضاً

Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synth etic light curves, calculated with the radiation hydrodynamical approach Stella for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.
Observational data from the Fermi Gamma-ray Space Telescope are analyzed with a goal in mind to look for variations in gamma-ray flux from young shell-like supernova remnants. Uniform methodological approach is adopted for all SNRs considered. G1.9+0 .3 and Kepler SNRs are not detected. The light curves of Cas~A and Tycho SNRs are compatible with the steady GeV flux during the recent ten years, as also X-ray and radio fluxes. Less confident results on SN1006 and SN1987A are discussed.
Progress in the three-dimensional modeling of supernovae (SN) prompts us to revisit the supernova remnant (SNR) phase. We continue our study of the imprint of a thermonuclear explosion on the SNR it produces, that we started with a delayed-detonation model of a Chandrasekhar-mass white dwarf. Here we compare two different types of explosion models, each with two variants: two delayed detonation models (N100ddt, N5ddt) and two pure deflagration models (N100def, N5def), where the N number parametrizes the ignition. The output of each SN simulation is used as input of a SNR simulation carried on until 500 yr after the explosion. While all SNR models become more spherical over time and overall display the theoretical structure expected for a young SNR, clear differences are visible amongst the models, depending on the geometry of the ignition and on the presence or not of detonation fronts. Compared to N100 models, N5 models have a strong dipole component, and produce asymmetric remnants. N5def produces a regular-looking, but offset remnant, while N5ddt produces a two-sided remnant. Pure deflagration models exhibit specific traits: a central over-density, because of the incomplete explosion, and a network of seam lines across the surface, boundaries between burning cells. Signatures from the SN dominate the morphology of the SNR up to 100 yr to 300 yr after the explosion, depending on the model, and are still measurable at 500 yr, which may provide a way of testing explosion models.
186 - Jacco Vink 2011
Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations ar e an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.
74 - V. P. Utrobin 2021
Six binary-merger progenitors of Supernova 1987A (SN 1987A) with properties close to those of the blue supergiant Sanduleak -69 202 are exploded by neutrino heating and evolved until long after shock breakout in three dimensions (3D), and continued f or light-curve calculations in spherical symmetry. Our results confirm previous findings for single-star progenitors: (1) 3D neutrino-driven explosions with SN 1987A-like energies synthesize Ni-56 masses consistent with the radioactive light-curve tail; (2) hydrodynamic models mix hydrogen inward to minimum velocities below 40 km/s compatible with spectral observations of SN 1987A; and (3) for given explosion energy the efficiency of outward radioactive Ni-56 mixing depends mainly on high growth factors of Rayleigh-Taylor instabilities at the (C+O)/He and He/H composition interfaces and a weak interaction of fast plumes with the reverse shock occurring below the He/H interface. All binary-merger models possess presupernova radii matching the photometric radius of Sanduleak -69 202 and a structure of the outer layers allowing them to reproduce the observed initial luminosity peak in the first about 7 days. Models that mix about 0.5 Msun of hydrogen into the He-shell and exhibit strong outward mixing of Ni-56 with maximum velocities exceeding the 3000 km/s observed for the bulk of ejected Ni-56 have light-curve shapes in good agreement with the dome of the SN 1987A light curve. A comparative analysis of the best representatives of our 3D neutrino-driven explosion models of SN 1987A based on single-star and binary-merger progenitors reveals that only one binary model fulfills all observational constraints, except one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا