ترغب بنشر مسار تعليمي؟ اضغط هنا

Faint Galaxies in deep ACS observations

52   0   0.0 ( 0 )
 نشر من قبل Narciso Benitez
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods which are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep HST observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman and Madore (2002), that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light of faint galaxies, what dramatically affects the slope of the number counts. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the g,V and I bands. We also show that combining the bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0.32+- 0.01 for 22 < g < 28, 0.34+-0.01 for 22< V <27.5 and 0.33+-0.01 for 22 < I < 27. The counts do not flatten (except perhaps in the g-band), up to the depth of our observations. We find that the faint counts m_{AB}> 25.5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (alpha=-1.5), with a strong merging rate following the prescription of Glazebrook et al. (1994), phi^*propto (1+Qz), with Q=4.

قيم البحث

اقرأ أيضاً

We present a morphological analysis of distant field galaxies using the deep ACS images from the public parallel NICMOS observations of the Hubble Ultra Deep Field obtained in the F435W (B), F606W (V), F775W (i) and F850LP (z) filters. We morphologic ally segregate galaxies using a combination of visual classification and objective machine based selection. We use the Asymmetry (A) and Central Concentration (C) parameters to characterize galaxies up to z_AB<25mag. We take advantage of the multicolor dataset and estimate redshifts for our sample using the Bayesian photometric redshift (BPZ) which enables us to investigate the evolution of their morphological demographics with redshift. Using a template fitting model and a maximum likelihood approach, we compute the star-formation rate (SFR) for galaxies up to z~1.3 and its contributions from different morphological types. We report that spirals are the main providers to the total SFR. The E/S0s contribution flattens out at z~1 while the Irr/Pec populations continuously rise to match the spirals contribution at z~1.0. We use the i-z and V-i color-magnitude diagrams to constrain the galaxies formation histories and find that E/S0s show both a population of luminous red galaxies in place at z~1.2 and a bluer and fainter population resembling those of Irr/Pec at similar redshifts.
Colors and magnitudes were determined for 69 chain galaxies, 58 other linear structures, 32 normal edge-on galaxies, and all of their large star formation clumps in the HST ACS field of the Tadpole galaxy. Redshifts of 0.5 to 2 are inferred from comp arisons with published color-evolution models. The linear galaxies have no red nuclear bulges like the normal disk galaxies in our field, but the star formation clumps in each have about the same colors and magnitudes. Light profiles along the linear galaxies tend to be flat, unlike the exponential profiles of normal galaxies. Although the most extreme of the linear objects look like beaded filaments, they are all probably edge-on disks that will evolve to late Hubble type galaxies. The lack of an exponential profile is either the result of a dust scale height that is comparable to the stellar scale height, or an intrinsically irregular structure. Examples of galaxies that could be face-
52 - Ana Campos , Tom Shanks 1995
In this paper we analyse the deep number counts problem, taking account of new observational and theoretical developments. First we show that the new Bruzual and Charlot (1993) models allow a new class of spiral dominated luminosity evolution (LE) mo del where significant amounts of the luminosity evolution needed to fit faint count data are due to spiral rather than early-type galaxies. Second we show that the inclusion of dust may be a vital ingredient for obtaining fits with any LE model. Third we compare the quality of fit of both the spiral and early-type LE models, including dust, for a wide variety of observational data. We find that parameters can be found for both LE models which allow a good fit to all data with the exception of the faintest B>25 counts in the case of q0=0.5 cosmologies, where some luminosity dependent evolution may be needed (see also Metcalfe et al 1995). Otherwise both these classes of LE model, with the inclusion of dust, provide an excellent foundation for understanding the B<25 galaxy counts and galaxy counts and redshift distributions in a variety of other wavebands.
We study the nature of faint, red-selected galaxies at z ~ 2-3 using the Hubble Ultra Deep Field (HUDF) and Spitzer IRAC photometry. We detect candidate galaxies to H < 26 mag, probing lower-luminosity (lower mass) galaxies at these redshifts. We ide ntify 32 galaxies satisfying the (J - H) > 1.0 mag color selection, 16 of which have unblended [3.6um] and [4.5um] IRAC photometry. We derive photometric redshifts, masses, and stellar population parameters for these objects. We find that the selected objects span a diverse range of properties over a large range of redshifts, 1 < z < 3.5. A substantial fraction (11/32) appear to be lower-redshift (z < 2.5), heavily obscured dusty galaxies or edge-on spiral galaxies, while others (12/32) appear to be galaxies at 2 < z < 3.5 whose light at rest-frame optical wavelengths is dominated by evolved stellar populations. Interestingly, by including Spitzer data many candidates for galaxies dominated by evolved stellar populations are rejected, and for only a subset of the sample (6/16) do the data favor this interpretation. We place an upper limit on the space and stellar mass density of candidate massive evolved galaxies. The z > 2.5 objects that are dominated by evolved stellar populations have a space density at most one-third that of z ~ 0 red, early-type galaxies. Therefore, at least two-thirds of present-day early-type galaxies assemble or evolve into their current configuration at redshifts below 2.5. We find a dearth of candidates for low-mass galaxies at 1.5 < z < 3 that are dominated by passively evolving stellar populations even though the data should be sensitive to them; thus, at these redshifts, galaxies whose light is dominated by evolved stellar populations are restricted to only those galaxies that have assembled high stellar mass.[Abridged]
Besides giant elliptical galaxies, a number of low-mass stellar systems inhabit the cores of galaxy clusters, such as dwarf elliptical galaxies (dEs/dSphs), ultra-compact dwarf galaxies (UCDs), and globular clusters. The detailed morphological examin ation of faint dwarf galaxies has, until recently, been limited to the Local Group (LG) and the two very nearby galaxy clusters Virgo and Fornax. Here, we compare the structural parameters of a large number of dEs/dSphs in the more distant clusters Hydra I and Centaurus to other dynamically hot stellar systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا