ترغب بنشر مسار تعليمي؟ اضغط هنا

FUSE Spectra of the Black Hole Binary LMC X-3

90   0   0.0 ( 0 )
 نشر من قبل J. B. Hutchings
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Far-ultraviolet spectra of LMC X-3 were taken covering photometric phases 0.47 to 0.74 in the 1.7-day orbital period of the black-hole binary (phase zero being superior conjunction of the X-ray source). The continuum is faint and flat, but appears to vary significantly during the observations. Concurrent RXTE/ASM observations show the system was in its most luminous X-ray state during the FUSE observations. The FUV spectrum contains strong terrestrial airglow emission lines, while the only stellar lines clearly present are emissions from the O VI resonance doublet. Their flux does not change significantly during the FUSE observations. These lines are modelled as two asymmetrical profiles, including the local ISM absorptions due to C II and possibly O VI. Velocity variations of O VI emission are consistent with the orbital velocity of the black hole and provide a new constraint on its mass.



قيم البحث

اقرأ أيضاً

We report the discovery of hysteresis between the x-ray spectrum and luminosity of black-hole binary LMC X-3. Our observations, with the Proportional Counter Array on the Rossi X-ray Timing Explorer, took place entirely within the soft spectral state , dominated by a spectral component that was fitted well with a multicolor disk blackbody. A power-law component was seen only during times when the luminosity of the disk blackbody was declining. The x-ray luminosity at these times was comparable to that seen in transient systems (x-ray novae) when they return to the hard state at the end of an outburst. Our observations may represent partial transitions to the hard state; complete transitions have been seen in this system by Wilms et al. (2001). If they are related to the soft-to-hard transition in transients, then they demonstrate that hysteresis effects can appear without a full state transition. We discuss these observations in the context of earlier observations of hysteresis within the hard state of binaries 1E 1740.7-2942 and GRS 1758-258 and in relation to published explanations of hysteresis in transients.
61 - M. A. Nowak 2000
We present results from 170ksec long RXTE observations of LMC X-1 and LMC X-3, taken in 1996 December, where their spectra can be described by a disc black body plus an additional soft (Gamma~2.8) high-energy power-law (detected up to 50keV in LMC X- 3). These observations, as well as archival ASCA observations, constrain any narrow Fe line present in the spectra to have an equivalent width <90eV, broad lines (~150eV EW, sigma ~ 1keV) are permitted. We also study the variability of LMC X-1. Its X-ray power spectral density (PSD) is approximately f^{-1} between 10^{-3} and 0.3Hz with a rms variability of ~7%. Above 5keV the PSD shows evidence of a break at f > 0.2Hz, possibly indicating an outer disc radius of ~1000GM/c^2 in this likely wind-fed system. Furthermore, the coherence function between variability in the > 5keV band and variablity in the lower energy bands is extremely low. We discuss the implications of these observations for the mechanisms.
We present a dynamical model of the high mass X-ray binary LMC X-1 based on high-resolution optical spectroscopy and extensive optical and near-infrared photometry. From our new optical data we find an orbital period of P=3.90917 +/- 0.00005 days. We present a refined analysis of the All Sky Monitor data from RXTE and find an X-ray period of P=3.9094 +/- 0.0008 days, which is consistent with the optical period. A simple model of Thomson scattering in the stellar wind can account for the modulation seen in the X-ray light curves. The V-K color of the star (1.17 +/- 0.05) implies A_V = 2.28 +/- 0.06, which is much larger than previously assumed. For the secondary star, we measure a radius of R_2 = 17.0 +/- 0.8 solar radii and a projected rotational velocity of V_rot*sin(i) = 129.9 +/- 2.2 km/s. Using these measured properties to constrain the dynamical model, we find an inclination of i = 36.38 +/- 1.92 deg, a secondary star mass of M_2 = 31.79 +/- 3.48 solar masses, and a black hole mass of 10.91 +/- 1.41 solar masses. The present location of the secondary star in a temperature-luminosity diagram is consistent with that of a star with an initial mass of 35 solar masses that is 5 Myr past the zero-age main sequence. The star nearly fills its Roche lobe (~90% or more), and owing to the rapid change in radius with time in its present evolutionary state, it will encounter its Roche lobe and begin rapid and possibly unstable mass transfer on a timescale of a few hundred thousand years.
We present the first results of extragalactic black hole X-ray binaries LMC X-1 and LMC X-3 using all the archival and legacy observations by AstroSat during the period of $2016-2020$. Broadband energy spectra ($0.5-20$ keV) of both sources obtained from the SXT and LAXPC on-board AstroSat are characterized by strong thermal disc blackbody component ($kT_{in}sim1$keV, $f_{disc}>79%$) along with a steep power-law ($Gammasim2.4-3.2$). Bolometric luminosity of LMC X-1 varies from $7-10%$ of Eddington luminosity ($L_{Edd}$) and for LMC X-3 is in the range $7-13%$ of $L_{Edd}$. We study the long-term variation of the light curve using MAXI data and find the fractional variance to be $sim25%$ for LMC X-1 and $sim53%$ for LMC X-3. We examine the temporal properties of both sources and obtain fractional rms variability of PDS in the frequency range $0.002-10$ Hz to be $sim9%-17%$ for LMC X-1, and $sim7%-11%$ for LMC X-3. The `spectro-temporal properties indicate both sources are in thermally dominated soft state. By modelling the spectra with relativistic accretion disc model, we determine the mass of LMC X-1 and LMC X-3 in the range $7.64-10.00$ $M_{odot}$ and $5.35-6.22$ $M_{odot}$ respectively. We also constrain the spin of LMC X-1 to be in the range $0.82-0.92$ and that of LMC X-3 in $0.22-0.41$ with 90% confidence. We discuss the implications of our results in the context of accretion dynamics around the black hole binaries and compare it with the previous findings of both sources.
97 - J. Wilms 1998
Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma is about 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3, we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its ~200d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا