ﻻ يوجد ملخص باللغة العربية
We present the results of both global cylindrical disc simulations and local shearing box simulations of protoplanets interacting with a disc undergoing MHD turbulence with zero net flux magnetic fields. We investigate the nature of the disc response and conditions for gap formation. This issue is an important one for determining the type and nature of the migration of the protoplanet, with the presence of a deep gap being believed to enable slower migration. For both types of simulation we find a common pattern of behaviour for which the main parameter determining the nature of the response is $M_p R^3/(M_* H^3)$, with $M_p$, $M_*$, $R$, and $H$ being the protoplanet mass, the central mass, the orbital radius and the disc semi-thickness respectively. We find that as this parameter is increased towards 0.1, the presence of the protoplanet is first indicated by the appearance of the well known trailing wake which, although it may appear erratic on account of the turbulence, appears to be well defined. Once the above parameter exceeds a number around unity a gap starts to develop inside which the magnetic energy density tends to be concentrated in the high density wakes. This gap formation condition can be understood from simple dimensional considerations of the conditions for nonlinearity, and the balance of angular momentum transport due to Maxwell and Reynolds stresses with that due to tidal torques. An important result is that the basic flow morphology in the vicinity of the protoplanet is very similar in both the local and global simulations. This indicates that local shearing box simulations, which are computationally less demanding, capture much of the physics of disc-planet interaction. Thus they may provide a useful tool for studying the local interaction between forming protoplanets and turbulent, protostellar discs.
(Abridged) We present global disc and local shearing box simulations of planets interacting with a MHD turbulent disc. We examine the torque exerted by the disc on the embedded planets as a function of planet mass, and thus make a first study of orbi
We present a global MHD simulation of a turbulent accretion disc interacting with a protoplanet of 5 Jupiter masses. The disc model had H/r=0.1,and a value of the Shakura & Sunyaev alpha ~ 0.005. The protoplanet opened a gap in the disc, with the int
Abridged: We study the properties of clumps formed in three-dimensional weakly magnetized magneto-hydrodynamic simulations of converging flows in the thermally bistable, warm neutral medium (WNM). We find that: (1) Similarly to the situation in the c
This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that c
The stresses produced by magnetorotational turbulence can provide effective angular momentum transport in accretion disks. However, questions remain about the ability of simulated disks to reproduce observationally inferred stress-to-gas-pressure rat