ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak Lensing by High-Redshift Clusters of Galaxies II: Mean Redshift of the Faint Background Galaxy Population

111   0   0.0 ( 0 )
 نشر من قبل Douglas Ian Clowe
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use weak lensing shear measurements of six z>0.5 clusters of galaxies to derive the mean lensing redshift of the background galaxies used to measure the shear. Five of these clusters are compared to X-ray mass models and verify a mean lensing redshift for a 23<R<26.3, R-I<0.9 background galaxy population in good agreement with photometric redshift surveys of the HDF-S. The lensing strength of the six clusters is also analyzed as a function of the magnitude of the background galaxies, and an increase in shear with increasing magnitude is detected at moderate significance. The change in the strength of the shear is presumed to be caused by an increase in the mean redshift of the background galaxies with increasing magnitude, and the degree of change detected is also in agreement with those in photometric redshift surveys of the HDF-S.

قيم البحث

اقرأ أيضاً

111 - D. Clowe , G. Luppino , N. Kaiser 1999
We present results of a weak gravitational lensing survey of six X-ray selected high-redshift clusters of galaxies. We find that the masses of the clusters derived from weak lensing are comparable to those derived from the X-ray observations. We show that many of the clusters have significant substructure not observed in the X-ray observations and that for the more massive clusters a singular isothermal sphere does not provide a good fit to the radial mass profile.
We study the properties of very faint, sub-L* Lyman break galaxies at z~2-5 - thus far a largely neglected but numerically and energetically very important population. We find that the LBG luminosity function undergoes luminosity-dependent evolution: the number of luminous galaxies remains constant while the number of faint ones grows with time. The total UV luminosity density increases with cosmic time from at least z~5 until reaching a peak or a plateau around z~2 - behaviour that is governed by the sub-L* galaxies in the LFs faint tail. Using broadband SED fitting we find a nearly-linear relationship between SFR and galaxy stellar mass at z~2. A typical L* LBG at z~2 shows a stellar mass of ~10^10M_sun, remarkably similar to the bimodality mass at low redshift. This similarity suggests that the mechanisms responsible for the galaxy bimodality at low-z may have also been at play at z~2.
65 - Tomas Dahlen 2004
Using photometric redshifts we determine the galaxy population of the clusters of galaxies Cl0016+16 at z=0.55, Cl1600+41 at z=0.54, Cl1601+42 at z=0.54 and MS1008-1224 at z=0.31. Comparing the clusters, we find no evidence for a universal shape of t he total luminosity function (LF) at these redshifts. When dividing the LFs into spectral types, we find that the LF of the early-type galaxies alone can be described by a Gaussian, while the LF of the late-type galaxies is well fitted by a Schechter function, suggesting that the separate LFs for different populations may be universal. The difference in the total LFs can mainly be attributed to the varying relative normalisation of these populations, implying that clusters with an abundant population of late-type galaxies also have steeper faint-end slopes. In MS1008-1224 we detect a faint blue population that dominates over a population with colours consistent with dwarf ellipticals, opposite to clusters at lower redshift. Compared to low redshift clusters, we find that a general fading of the late-type population by ~2 mag and the early-type population by ~1 mag describes the evolution from z=0.55 to z=0 well. As a consequence of the different early-type and late-type LFs and their dependence on cluster radius, the fraction of blue cluster galaxies, as measured by the Butcher-Oemler effect, differs between the clusters and depends on limiting magnitude and radius. We find a correlation between the dwarf-to-giant ratio and the surface density, indicating that the high density environment in the cluster cores is hostile to dwarf galaxies.
We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (fb) to investigate the clustercentr ic radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r200 to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (Bgc), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The fb is found not to correlate with Bgc; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy fb is approximately constant with clustercentric radius except for the inner cluster core region where fb decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction, indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا