ﻻ يوجد ملخص باللغة العربية
We present the first three-dimensional fully kinetic electromagnetic relativistic particle-in-cell simulations of the collision of two interpenetrating plasma shells. The highly accurate plasma-kinetic particle-in-cell (with the total of $10^8$ particles) parallel code OSIRIS has been used. Our simulations show: (i) the generation of long-lived near-equipartition (electro)magnetic fields, (ii) non-thermal particle acceleration, and (iii) short-scale to long-scale magnetic field evolution, in the collision region. Our results provide new insights into the magnetic field generation and particle acceleration in relativistic and sub-relativistic colliding streams of particles, which are present in gamma-ray bursters, supernova remnants, relativistic jets, pulsar winds, etc..
Gamma ray bursts are among the most energetic events in the known universe. A highly relativistic fireball is ejected. In most cases the burst itself is followed by an afterglow, emitted under deceleration as the fireball plunges through the circum-s
Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron
We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and supra-thermal particles. Such interaction is depicted by combining a grid-based magneto-hydrodynamics description
According to the most popular model for the origin of cosmic rays (CRs), supernova remnants (SNRs) are the site where CRs are accelerated. Observations across the electromagnetic spectrum support this picture through the detection of non-thermal emis