ترغب بنشر مسار تعليمي؟ اضغط هنا

The Properties of Galaxies at z>5

43   0   0.0 ( 0 )
 نشر من قبل Matthew D. Lehnert
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. N. Bremer




اسأل ChatGPT حول البحث

In a recent paper Lehnert & Bremer have photometrically selected a sample of galaxies at z>4.8 from a single VLT/FORS2 pointing and spectroscopically confirmed half of them to be at 4.8<z<5.8. To study the properties of such galaxies further, we have photometrically selected a similar sample (V(AB)>28, i(AB)<26.3, i(AB)-z(AB)>0) from the HST ACS images of the Chandra Deep Field South. This selection results in a sample of 44 sources from ~150 sq. arcmin. We find that such galaxies are often barely resolved in the ACS images, having half-light radii of 0.1-0.3 arcsec (<2 kpc). They show no difference in spatial clustering from sources selected by i(AB)<26.3, i(AB)-z(AB)>0, which are generally galaxies of lower redshift. However, their distribution over the field is not uniform and their surface density varies considerably over areas comparable to a single 8m or HST pointing. The reliable determination of the surface and volume densities of such galaxies requires a sky area considerably larger than the current ACS imaging of this field. No individual z>5 candidate was detected to a 3-sigma limit of 6 x 10^-17 erg s^-1 cm^-2 at 0.5-5 keV by Chandra (a limiting luminosity of below 2 x 10^43 erg s^-1 at z~5.3). By summing over all positions, we find that the mean source must be undetected at a level at least a factor 4 times fainter than this. This rules out anything other than a weak AGN contribution to the emission from these objects and thus luminous AGN made little contribution to the final stages of re-ionization of the Universe.



قيم البحث

اقرأ أيضاً

We present the results of Spectral Energy Distribution(SED) fitting analysis for Lyman Break Galaxies(LBGs) at z~5 in the GOODS-N and its flanking fields (the GOODS-FF). With the publicly available IRAC images in the GOODS-N and IRAC data in the GOOD S-FF, we constructed the rest-frame UV to optical SEDs for a large sample (~100) of UV-selected galaxies at z~5. Comparing the observed SEDs with model SEDs generated with a population synthesis code, we derived a best-fit set of parameters (stellar mass, age, color excess, and star formation rate) for each of sample LBGs. The derived stellar masses range from 10^8 to 10^11M_sun with a median value of 4.1x10^9M_sun. The comparison with z=2-3 LBGs shows that the stellar masses of z~5 LBGs are systematically smaller by a factor of 3-4 than those of z=2-3 LBGs in a similar rest-frame UV luminosity range. The star formation ages are relatively younger than those of the z=2-3 LBGs. We also compared the results for our sample with other studies for the z=5-6 galaxies. Although there seem to be similarities and differences in the properties, we could not conclude its significance. We also derived a stellar mass function of our sample by correcting for incompletenesses. Although the number densities in the massive end are comparable to the theoretical predictions from semi-analytic models, the number densities in the low-mass part are smaller than the model predictions. By integrating the stellar mass function down to 10^8 M_sun, the stellar mass density at z~5 is calculated to be (0.7-2.4)x10^7M_sun Mpc^-3. The stellar mass density at z~5 is dominated by massive part of the stellar mass function. Compared with other observational studies and the model predictions, the mass density of our sample is consistent with general trend of the increase of the stellar mass density with time.
63 - I. Iwata , K. Ohta 2003
(abridged) We present results of a search for Lyman break galaxies (LBGs) at z ~ 5 in a 618 square-arcmin field including the HDF-N taken by Subaru Prime Focus Camera. Utilizing the published redshift data of the HDF-N and its flanking fields, the co lor selection criteria are chosen so that LBGs are picked out most efficiently and least contaminated by foreground objects. The numbers of LBG candidates detected are 310 in 23.0 < I_c < 25.5. The rest-frame UV luminosity function(LF) of LBGs at z ~ 5 is derived statistically. The fraction of contamination is estimated to be ~50% in the faintest magnitude range. The completeness of the survey is ~80% at the bright part of the sample, and ~20% in the faintest magnitude range (25.0 < I_c <= 25.5). The LF of LBG candidates at z ~ 5 does not show a significant difference from those at z ~ 3 and 4, though there might be a slight decrease in the fainter part. The UV luminosity density within the observational limit is 0.56 - 0.69 times smaller than that obtained for LBGs at z ~ 3, depending on the adopted cosmology and the integration range of the LF. The similarity of the LFs at redshifts 5 to 3 implies that most of LBGs at z ~ 5 should have faded out at z ~ 3 and LBGs at z ~ 5 are different galaxies from those seen at z ~ 3, if we take face values for ages of the LBGs at z ~ 3 obtained by the SED fitting in which a continuous star formation in an individual galaxy is assumed. However, if the star formation in LBGs is sporadic, the similarity of the LF at z ~ 3 and 5 would be explained. Such sporadic star formation has been suggested by hydrodynamical simulations and semi-analytic models with collisional starbursts, and the trend of the cosmic star formation history predicted by these studies resembles to that estimated from the UV luminosity density within the observational limit.
379 - K.E.K. Coppin 2014
We present statistically significant detections at 850um of the Lyman Break Galaxy (LBG) population at z=3, 4, and 5 using data from the Submillimetre Common User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS) in the United Kingdom Infra red Deep Sky Survey Ultra Deep Survey (UKIDSS-UDS) field. We employ a stacking technique to probe beneath the survey limit to measure the average 850um flux density of LBGs at z=3, 4, and 5 with typical ultraviolet luminosities of L(1700A)~10^29 erg/s/Hz. We measure 850um flux densities of (0.25 +/- 0.03, (0.41 +/- 0.06), and (0.88 +/- 0.23) mJy respectively, and find that they contribute at most 20 per cent to the cosmic far-infrared background at 850um. Fitting an appropriate range of spectral energy distributions to the z=3, 4, and 5 LBG stacked 24-850um fluxes, we derive infrared (IR) luminosities of L(8-1000um)~3.2, 5.5, and 11.0x10^11 Lsun (corresponding to star formation rates of ~50-200 Msun/yr) respectively. We find that the evolution in the IR luminosity density of LBGs is broadly consistent with model predictions for the expected contribution of luminous IR galaxy (LIRG) to ultraluminous IR galaxy (ULIRG) type systems at these epochs. We also see a strong positive correlation between stellar mass and IR luminosity. Our data are consistent with the main sequence of star formation showing little or no evolution from z=3 to 5. We have also confirmed that, for a fixed mass, the reddest LBGs (UV slope Beta -> 0) are indeed redder due to dust extinction, with SFR(IR)/SFR(UV) increasing by approximately an order of magnitude over -2<Beta<0 such that SFR(IR)/SFR(UV)~20 for the reddest LBGs. Furthermore, the most massive LBGs also tend to have higher obscured-to-unobscured ratio, hinting at a variation in the obscuration properties across the mass range.
594 - R. Maiolino , R. Neri , A. Beelen 2007
We present observations with the IRAM Plateau de Bure Interferometer of three QSOs at z>5 aimed at detecting molecular gas in their host galaxies as traced by CO transitions. CO (5-4) is detected in SDSSJ033829.31+002156.3 at z=5.0267, placing it amo ngst the most distant sources detected in CO. The CO emission is unresolved with a beam size of ~1, implying that the molecular gas is contained within a compact region, less than ~3kpc in radius. We infer an upper limit on the dynamical mass of the CO emitting region of ~3x10^10 Msun/sin(i)^2. The comparison with the Black Hole mass inferred from near-IR data suggests that the BH-to-bulge mass ratio in this galaxy is significantly higher than in local galaxies. From the CO luminosity we infer a mass reservoir of molecular gas as high as M(H2)=2.4x10^10 Msun, implying that the molecular gas accounts for a significant fraction of the dynamical mass. When compared to the star formation rate derived from the far-IR luminosity, we infer a very short gas exhaustion timescale (~10^7 yrs), comparable to the dynamical timescale. CO is not detected in the other two QSOs (SDSSJ083643.85+005453.3 and SDSSJ163033.90+401209.6) and upper limits are given for their molecular gas content. When combined with CO observations of other type 1 AGNs, spanning a wide redshift range (0<z<6.4), we find that the host galaxy CO luminosity (hence molecular gas content) and the AGN optical luminosity (hence BH accretion rate) are correlated, but the relation is not linear: L(CO) ~ [lambda*L_lambda(4400A)]^0.72. Moreover, at high redshifts (and especially at z>5) the CO luminosity appears to saturate. We discuss the implications of these findings in terms of black hole-galaxy co-evolution.
We have discovered six galaxies with spectroscopically confirmed redshifts of 4.8<z<5.8 in a single 44 square arcminute field imaged deeply in R, I and z-bands. All the spectra show an emission-line in the region around 7000-8400 angstroms with a spe ctroscopically-detected faint continuum break across the line. These six were drawn from 13 sources with I_AB<26.2 and R_AB-I_AB>1.5 in the field, this photometric cut designed to select galaxies at z>4.8. The line fluxes range between 0.2 to 2.5 x 10^-17 ergs cm^-2 s^-1 indicating luminosities of around 10^42-43 ergs s^-1 for Ly-alpha and their high emission line equivalent widths suggest very young ages (<10^8 yrs). A further line-emitting object with no detectable continuum was serendipitously detected by spectroscopy. If this line is Ly-alpha then it is from a source at z=6.6, making this the most distant galaxy known. However, the redshift cannot be considered secure as it is based on a single line. No broad emission line objects (quasars) were detected. The 13 sources at I_AB<26.2 are less than that expected if the luminosity function of dropout galaxies remained unchanged between z=3 and z=6, although the deficit is not highly significant given possible cosmic variance. The UV luminosity density from galaxies brighter than our flux limit is considerably less than that necessary to keep the volume probed by our field at <z>~5.3 ionized. These galaxies are observed within several hundred Myr of the end of the epoch of reionization (z=6-7), with little time for the luminosity function to evolve. This, and the lack of detected quasars, imply that the bulk of the UV flux that reionized the universe came from faint galaxies with M_(1700 ang)>-21.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا