ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon abundances and 12C/13C from globular cluster giants

164   0   0.0 ( 0 )
 نشر من قبل Pavlenko Ya. V.
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The behaviour of the Delta nu =2 CO bands around 2.3 micron was examined by comparing observed and synthetic spectra in stars in globular clusters of different metallicity. Changes in the 12C/13C isotopic ratio and the carbon abundances were investigated in stars from 3500--4900 K in the galactic globular clusters M71, M5, M3 and M13, covering the metallicity range from --0.7 to --1.6. We found relatively low carbon abundances that are not affected by the value of oxygen abundance. For most giants the 12C/13C ratios determined are consistent with the equilibrium value for the CN cycle. This suggests complete mixing on the ascent of the red giant branch, in contrast to the substantially higher values predicted across this range of parameters by the current generation of models. We found some evidence for a larger dispersion of CDC in giants of M71 of metallicity [mu] = [M/H] = -0.7 in comparison with the giants of M3, M5 and M13, which are more metal deficient. Finally, we show evidence for lower 12C/13C in giants of globular clusters with lower metallicities, as predicted by theory.

قيم البحث

اقرأ أيضاً

Nitrogen abundances and carbon isotope ratios (12C/13C) in the atmospheres of red giants are known to be influenced by dredge-up of H-burning products and serve as useful probes to study the nature of evolution-induced envelope mixing. We determined the [N/Fe] and 12C/13C ratios for 239 late-G/early-K giant stars by applying the spectrum-fitting technique to the 12CN and 13CN lines in the ~8002-8005A region, with an aim to investigate how these quantities are related to other similar mixing-affected indicators which were already reported in our previous work. It was confirmed that [N/Fe] values are generally supersolar (typically by several tenths dex though widely differ from star to star), anti-correlated with [C/Fe], and correlated with [Na/Fe], as expected from theory. As seen from their dependence upon stellar parameters, it appears that mixing tends to be enhanced with an increase of stellar luminosity (or mass) and rotational velocity, which is also reasonable from the theoretical viewpoint. In contrast, the resulting 12C/13C ratios turned out to be considerably diversified in the range of ~5-50 (with a peak around ~20), without showing any systematic dependence upon C or N abundance anomalies caused by the mixing of CN-cycled material. It thus appears that our understanding on the photospheric 12C/13C ratios in red giants is still incomplete, for which more observational studies would be required.
Evolved low-mass stars of a wide range of metallicity bear signatures of a non-standard mixing event in their surface abundances of Li, C, and N, and in their 12C/13C ratio. A Na overabundance has also been reported in some giants of open clusters bu t remains controversial. The cause of the extra-mixing has been attributed to thermohaline convection that should take place after the RGB bump for low-mass stars and on the early-AGB for more massive objects. To track the occurrence of this process over a wide mass range, we derive in a homogeneous way the abundances of C, N, O, and Na, as well as the 12C/13C ratio in a sample of 31 giants of 10 open clusters with turn-off masses from 1.7 to 3.1 Msun. A group of first ascent red giants with M/Msun leq 2.5 exhibits lower [N/C] ratios than those measured in clump giants of the same mass range, suggesting an additional increase in the [N/C] ratio after the first dredge-up. The sodium abundances corrected from NLTE are found to be about solar. [Na/Fe] shows a slight increase of 0.10 dex as a function of stellar mass in the 1.8 to 3.2 Msun range covered by our sample, in agreement with standard first dredge-up predictions. Our results do not support previous claims of sodium overabundances as high as +0.60 dex. An anti-correlation between 12C/13C and turn-off mass is identified and interpreted as being caused by a post-bump thermohaline mixing. Moreover, we find low 12C/13C ratios in a few intermediate-mass early-AGB stars, confirming that an extra-mixing process also operates in stars that do not experienced the RGB bump. In this case, the extra-mixing possibly acts on the early-AGB, in agreement with theoretical expectations for thermohaline mixing. [abridged]
We present the results of an observational study of the efficiency of deep mixing in globular cluster red giants as a function of stellar metallicity. We determine [C/Fe] abundances based on low-resolution spectra taken with the Kast spectrograph on the 3m Shane telescope at Lick Observatory. Spectra centered on the 4300 Angstrom CH absorption band were taken for 42 bright red giants in 11 Galactic globular clusters ranging in metallicity from M92 ([Fe/H]=-2.29) to NGC 6712 ([Fe/H]=-1.01). Carbon abundances were derived by comparing values of the CH bandstrength index S2(CH) measured from the data with values measured from a large grid of SSG synthetic spectra. Present-day abundances are combined with theoretical calculations of the time since the onset of mixing, which is also a function of stellar metallicity, to calculate the carbon depletion rate across our metallicity range. We find that the carbon depletion rate is twice as high at a metallicity of [Fe/H]=-2.3 than at [Fe/H]=-1.3, which is a result qualitatively predicted by some theoretical explanations of the deep mixing process.
Existing measurements of the angular distributions of the ground-state to ground-state transitions of the 12C(d,p)13C and 13C(p,d)12C neutron-transfer reactions have been analyzed systematically using the Johnson-Soper adiabatic and distorted-wave th eories. When using a consistent set of physical inputs the deduced spectroscopic factors are consistent to within 20% for incident deuteron energies from 6 to 60 MeV. By contrast, original analyses of many of these data quoted spectroscopic factors that differed by up to a factor of five. The present analysis provides an important reference point from which to assess the requirements of future spectroscopic analyses of transfer reactions measured in inverse kinematics using rare nuclei.
We report chemical abundances obtained by SDSS-III/APOGEE for giant stars in five globular clusters located within 2.2 kpc of the Galactic centre. We detect the presence of multiple stellar populations in four of those clusters (NGC 6553, NGC 6528, T erzan 5, and Palomar 6) and find strong evidence for their presence in NGC 6522. All clusters present a significant spread in the abundances of N, C, Na, and Al, with the usual correlations and anti-correlations between various abundances seen in other globular clusters. Our results provide important quantitative constraints on theoretical models for self-enrichment of globular clusters, by testing their predictions for the dependence of yields of elements such as Na, N, C, and Al on metallicity. They also confirm that, under the assumption that field N-rich stars originate from globular cluster destruction, they can be used as tracers of their parental systems in the high- metallicity regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا