ترغب بنشر مسار تعليمي؟ اضغط هنا

A Soft X-ray Component in the Abell 754 Cluster

104   0   0.0 ( 0 )
 نشر من قبل Eric Tittley
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have analyzed the Chandra, BeppoSax, and ROSAT observations of Abell 754 and report evidence of a soft, diffuse X-ray component. The emission is peaked in the cluster center and is detected out to 8 from the X-ray center. Fitting a thermal model to the combined BeppoSax and PSPC spectra show excess emission below 1 keV in the PSPC and above 100 keV in the BeppoSax PDS. The source 26W20 is in the field of view of the PDS. The addition of a powerlaw with the spectral parameters measured by Silverman et al. (1998) for 26W20 successfully models the hard component in the PDS. The remaining excess soft emission can be modeled by either a low temperature, 0.75 - 1.03 keV component, or by a powerlaw with a steep spectral index, 2.3. Addition of a second thermal component model provides a much better fit to the data than does the addition of a non-thermal component. The Chandra temperature map does not show any region cooler than 6.9 keV within the region where the cool component was detected. Simulations of the emission from embedded groups were performed and compared with the Chandra temperature map which show groups are a plausible source of ~1 keV emission. The cool component is centrally peaked in the cluster and the gas density and temperature are relatively high arguing against the WHIM as the source of the X-ray emission. X-ray emission from elliptical galaxies is not high enough to provide the total cool component luminosity, 7.0x10^43 ergs s^-1. The peak of the cool component is located between the low frequency radio halos arguing against a non-thermal interpretation for the emission. We conclude that emission from embedded groups is the most likely origin of the cool component in Abell 754.



قيم البحث

اقرأ أيضاً

We present a long BeppoSAX observation of Abell 754 that reports a nonthermal excess with respect to the thermal emission at energies greater than ~45 keV. A VLA radio observation at 1.4 GHz definitely confirms the existence of diffuse radio emission in the central region of the cluster, previously suggested by images at 74 and 330 MHz (Kassim et al 2001), and reports additional features. Besides, our observation determines a steeper radio halo spectrum in the 330-1400 MHz frequency range with respect to the spectrum detected at lower frequencies, indicating the presence of a spectral cutoff. The presence of a radio halo in A754, considered the prototype of a merging cluster, reinforces the link between formation of Mpc-scale radio regions and very recent or current merger processes. The radio results combined with the hard X-ray excess detected by BeppoSAX give information on the origin of the electron population responsible for nonthermal phenomena in galaxy clusters. We discuss also the possibility that 26W20, a tailed radio galaxy with BL Lac characteristics located in the field of view of the PDS, could be responsible for the observed nonthermal hard X-ray emission.
To better understand the mechanism or mechanisms that lead to AGN activity today, we measure the X-ray AGN fraction in a new sample of nearby clusters and examine how it varies with galaxy properties, projected cluster-centric radius, and cluster vel ocity dispersion. We present new wide-field Chandra X-ray Observatory observations of Abell 85, Abell 754 and the background cluster Abell 89B out to their virial radii. Out of seventeen X-ray sources associated with galaxies in these clusters, we classify seven as X-ray AGN with L_{X,B} > 10^{41} erg/s. Only two of these would be classified as AGN based on their optical spectra. We combine these observations with archival data to create a sample of X-ray AGN from six z < 0.08 clusters and find that 3.4+1.1/-0.8% of M_R < -20 galaxies host X-ray AGN with L_{X,B} > 10^{41} erg/s. We find that more X-ray AGN are detected in more luminous galaxies and attribute this to larger spheriods in more luminous galaxies and increased sensitivity to lower Eddington-rate accretion from black holes in those spheroids. At a given X-ray luminosity limit, more massive black holes can be accreting less efficiently, yet still be detected. If interactions between galaxies are the principal drivers of AGN activity, then the AGN fraction should be higher in lower velocity dispersion clusters and the outskirts of clusters. However, the tendency of the most massive and early-type galaxies to lie in the centers of the richest clusters could dilute such trends. While we find no variation in the AGN fraction with projected cluster-centric radius, we do find that the AGN fraction increases significantly from 2.6+1.0/-0.8% in rich clusters to 10.0+6.2/-4.3% in those with lower velocity dispersions.
Abell 754 is a galaxy cluster in which an ongoing merger is evident on the plane of the sky, from the southeast to the northwest. We study the spatial variation of the X-ray spectra observed with Suzaku along the merging direction, centering on the F e Ly-alpha / Fe He-alpha line ratio to search for possible deviation from ionization equilibrium. Fitting with a single temperature collisional non-equilibrium plasma model shows that the electron temperature increases from the southeast to the northwest. The ionization parameter is consistent with that in equilibrium (n_et>10^{13} s cm^{-3}) except for a specific region with the highest temperature (kT=13.3^{+1.4}_{-1.1} keV) where n_et=10^{11.6^{+0.6}_{-1.7}} s cm^{-3}. The elapsed time from the plasma heating estimated from the ionization parameter is 0.36-76 Myr at the 90% confidence level. This time scale is quite short but consistent with the traveling time of a shock to pass through that region. We thus interpret that the non-equilibrium ionization plasma in Abell 754 observed is a remnant of the shock heating in the merger process. We, however, note that the X-ray spectrum of the specific region where the non-equilibrium is found can also be fitted with a collisional ionization plasma model with two temperatures, low kT=4.2^{+4.2}_{-1.5} keV and very high kT > 19.3 keV. The very high temperature component is alternatively fitted with a power law model. Either of these spectral models is interpreted as a consequence of the ongoing merger process as in the case of that with the non-equilibrium ionization plasma.
We analyze the first X-ray observations with XMM-Newton of RXS J070407.9+262501 and 1RXS 180340.0+401214, in order to characterize their broad-band temporal and spectral properties, also in the UV/optical domain, and to confirm them as Intermediate P olars. For both objects, we performed a timing analysis of the X-ray and UV/optical light curves to detect the white dwarf spin pulsations and study their energy dependence. For 1RXS 180340.0+401214 we also analyzed optical spectroscopic data to determine the orbital period. X-ray spectra were analyzed in the 0.2-10.0 keV range to characterize the emission properties of both sources. We find that the X-ray light curves of both systems are energy dependent and are dominated, below 3-5 keV, by strong pulsations at the white dwarf rotational periods (480 s for 1RXS J070407.9+262501 and 1520.5 s for 1RXS 180340.0+401214). In 1RXS 180340.0+401214 we also detect an X-ray beat variability at 1697 s which, together with our new optical spectroscopy, favours an orbital period of 4.4 hr that is longer than previously estimated. Both systems show complex spectra with a hard (up to 40 keV) optically thin and a soft (85-100 eV) optically thick components heavily absorbed by material partially covering the X-ray sources. Our observations confirm the two systems as Intermediate Polars and also add them as new members of the growing group of soft systems which show the presence of a soft X-ray blackbody component. Differences in the temperatures of the blackbodies are qualitatively explained in terms of reprocessing over different sizes of the white dwarf spot. We suggest that systems showing cooler soft X-ray blackbody components also possess white dwarfs irradiated by cyclotron radiation.
We present Chandra observations of the galaxy cluster AC114, which shows a strongly irregular morphology, with signs of multiple merging activity. We report the discovery of a soft X-ray filament originating close to the core of the cluster. We confi rm that X-ray emission is associated with two of three mass concentrations identified in previous gravitational lensing studies of this object. These two mass concentrations are located at opposite ends of the soft filament, evidence for interaction between them. In the northern part, the cluster shows two sharp discontinuities, both in surface brightness and in temperature, evincing another, more recent merger event which took place in, or close, to the cluster core. In spite of the merger activity, a combined mass and lensing analysis shows remarkably good agreement between lensing and X-ray masses. We therefore advocate for the robustness of the X-ray mass estimates, and conclude that the assumption of hydrostatic equilibrium can yield accurate mass estimates even in clusters as dynamically active as AC 114, once the gas density distribution is properly mapped.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا