ﻻ يوجد ملخص باللغة العربية
Powerful radio galaxies often display enhanced optical/UV continuum emission and extended emission line regions, elongated and aligned with the radio jet axis. The expansion of the radio source strongly affects the gas clouds in the surrounding IGM, and the kinematic and ionization properties of the extended emission line regions display considerable variation over the lifetime of individual sources, as well as with cosmic epoch. We present the results of deep rest-frame UV and optical imaging and UV spectroscopy of high redshift 6C radio galaxies. The interdependence of the host galaxy and radio source properties are discussed, considering: (i) the relative contribution of shocks associated with the expanding radio source to the observed emission line gas kinematics, and their effect on the ionization state of the gas; (ii) the similarities and differences between the morphologies of the host galaxies and aligned emission for a range of radio source powers; and (iii) the influence of radio power on the strength of the observed alignment effect.
(abridged) Powerful radio galaxies often display enhanced optical/UV emission regions, elongated and aligned with the radio jet axis. The aim of this series of papers is to separately investigate the effects of radio power and redshift on the alignme
The results of Hubble Space Telescope and UKIRT imaging observations are presented for a sample of 11 6C radio galaxies with redshifts 0.85 < z < 1.5. The observations of the 6C sources reveal a variety of different features, similar to those observe
We present a new radio sample, 6C** designed to find radio galaxies at z > 4 and discuss some of its near-infrared imaging follow-up results.
Active galaxies are the most powerful engines in the Universe for converting gravitational energy into radiation, and radio galaxies and radio-loud quasars are highly luminous and can be detected across the Universe. The jets that characterise them n
We present a CO(1-0) survey for cold molecular gas in a representative sample of 13 high-z radio galaxies (HzRGs) at 1.4<z<2.8, using the Australia Telescope Compact Array. We detect CO(1-0) emission associated with five sources: MRC 0114-211, MRC 01