ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for a Long Cosmic String Through the Gravitational Lensing Effect

54   0   0.0 ( 0 )
 نشر من قبل Yuji Shirasaki
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yuji Shirasaki




اسأل ChatGPT حول البحث

It has been suggested that cosmic strings produced at a phase transition in the early universe can be the origin of the extremely high energy cosmic rays (EHCR) observed by AGASA above 10^20 eV. Superheavy cosmic strings with linear mass density of 10^22 g/cm can be indirectly observed through the gravitational lensing effect the distant galaxies. The lensing effect by a long straight object can be characterized by a line of double galaxies or quasars with angular separation of about 5 arcsec. We have searched for aligned double objects from the archived data taken by the Subaru Prime Focus Camera (Suprime-Cam). The Suprime-Cam has a great advantage in observing the wide field of view (30x30 arcmin^2) with high sensitivity (R<26 400s exposure), so it is suitable for this research. In this paper, we describe the result of simulation study for developing the method of searching the objects lensed by cosmic strings, and present the observational result obtained by this method.

قيم البحث

اقرأ أيضاً

Cosmic strings are potential gravitational wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four events with a false alarm probability less than 1%. However further investigation shows that all of these are likely to be spurious. As there are no convincing detections we place upper limits on the GW amplitude for different event durations. From these bounds we place limits on the cosmic string tension of G mu ~ 10^{-5}, and highlight that this bound is independent from those obtained using other techniques. We discuss the physical implications of our results and the prospect of probing cosmic strings in the era of Square Kilometre Array (SKA).
We consider the femto-lensing due to a cosmic string. If a cosmic string with the deficit angle $Deltasim 100$ [femto-arcsec] $sim10^{-18}$ [rad] exists around the line of sight to a gamma-ray burst, we may observe characteristic interference pattern s caused by gravitational lensing in the energy spectrum of the gamma-ray burst. This femto-lensing event was first proposed as a tool to probe small mass primordial black holes. In this paper, we propose use of the femto-lensing to probe cosmic strings with extremely small tension. Observability conditions and the event rate are discussed. Differences between the cases of a point mass and a cosmic string are presented.
123 - D. Schaerer 2006
Observing the first galaxies formed during the reionisation epoch, i.e. approximately within the first billion years after the Big Bang, remains one of the challenges of contemporary astrophysics. Several efforts are being undertaken to search for su ch remote objects. Combining the near-IR imaging power of the VLT and the natural effect of strong gravitational lensing our pilot program has allowed us to identify several galaxy candidates at redshift 6 <~ z <~ 10. The properties of these objects and the resulting constraints on the star formation rate density at high redshift are discussed. Finally we present the status of follow-up observations (ISAAC spectroscopy, HST and Spitzer imaging) and discuss future developments.
With increasing sensitivities of the current ground-based gravitational-wave (GW) detectors, the prospects of detecting a strongly lensed GW signal are going to be high in the coming years. When such a signal passes through an intervening lensing gal axy or galaxy cluster, the embedded stellar-mass microlenses lead to interference patterns in the signal that may leave observable signatures. In this work, we present an extensive study of these wave effects in the LIGO/Virgo frequency band ($10$-$10^4$ Hz) due to the presence of the microlens population in galaxy-scale lenses for the first time. We consider a wide range of strong lensing (macro) magnifications and the corresponding surface microlens densities found in lensing galaxies and use them to generate realisations of the amplification factor. The methodologies for simulating amplification curves for both types of images (minima and saddle points) are also discussed. We then study how microlensing is broadly affected by the parameters like macro-magnifications, stellar densities, the initial mass function (IMF), types of images, and microlens distribution around the source. In general, with increasing macro-magnification values, the effects of microlensing become increasingly significant regardless of other parameters. Mismatch analysis between the lensed and the unlensed GW waveforms from chirping binaries suggests that, while inferring the source parameters, microlensing can not be neglected for macro-magnification $gtrsim 15$. Furthermore, for extremely high macro-magnifications $gtrsim 100$, the mismatch can even exceed $5%$, which can result in both a missed detection and, consequently, a missed lensed signal.
The present paper is intended for studying the effect of strong gravitational lensing in the context of charged wormhole. To study this effect, the conditions determining the existence of photon spheres at and outside the throat are obtained. The nec essary and sufficient conditions for the existence of photon spheres at or outside the throat of the charged wormhole is derived. Furthermore, photon spheres are investigated in three cases for three different forms of redshift function. These three cases include the existence of effective photon spheres (i) at the throat, (ii) outside the throat and (iii) both at and outside the throat. Consequently, these provide the information about the formation of infinite number of concentric rings and may lead to the detection of wormhole geometries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا