ترغب بنشر مسار تعليمي؟ اضغط هنا

A BeppoSAX observation of MKN6

149   0   0.0 ( 0 )
 نشر من قبل Angela Malizia
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used the BeppoSAX satellite to study the broad band (0.5-100 keV) X-ray spectrum of the Seyfert 1.5 galaxy MKN6. The source is characterized by a power law of Gamma=1.7 [+0.08, -0.07] and there is no strong evidence for either a reflection bump or a high energy cut-off. We have detected a narrow iron line at 6.4 keV (rest frame) with an equivalent width of 98 [+33, -35] eV. MKN6 also exhibits strong and complex absorption. At least two components (NH_1 =1.34 [+0.4,-0.4] x 10^(22) cm^(-2) and NH_2 = 4.18 [+2.2, -1.3] x 10^(22) cm^(-2)) are present and they both partially cover the source with covering fractions of ~90% and ~50% respectively. Comparison with a previous ASCA observation indicates that in both absorbing columns the NH is variable over a 2 year timescale, while the covering fractions are constant over the same amount of time. The state of each absorber is cold or mildly photoionized. The Broad Line Region (BLR) is suggested as the possible location for this complex absorption.

قيم البحث

اقرأ أيضاً

We present an analysis of BeppoSAX observations of the IC1262 galaxy cluster and report the first temperature and abundance measurements, along with preliminary indications of diffuse, nonthermal emission. By fitting a 6 (~360 h_50^-1 kpc) region wit h a single Mewe-Kaastra-Liedahl model with photoelectric absorption, we find a temperature of 2.1 - 2.3 keV, and abundance of 0.45 - 0.77 (both 90% confidence). We find the addition of a power-law component provides a statistically significant improvement (F-test = 90%) to the fit. The addition of a second thermal component also improves the fit but we argue that it is physically implausible. The power-law component has a photon index (Gamma_X) of 0.4 - 2.8 and a nonthermal flux of (4.1 - 56.7) x 10-5 photons cm^-2 s^-1 over the 1.5 - 10.5 keV range in the Medium Energy Concentrator spectrometer detector. An unidentified X-ray source found in the ROSAT High Resolution Imager observation (~0.9 from the center of the cluster) is a possible explanation for the nonthermal flux; however, additional evidence of diffuse, nonthermal emission comes from the NRAO VLA Sky Survey and the Westerbork Northern Sky Survey radio measurements, in which excess diffuse, radio flux is observed after point-source subtraction. The radio excess can be fitted to a simple power law with a spectral index of ~1.8, which is consistent with the nonthermal X-ray emission spectral index. The steep spectrum is typical of diffuse emission and the size of the radio source implies that it is larger than the cD galaxy and not due to a discreet source.
125 - L. Nicastro 2003
We present the results of a BeppoSAX observation of the fastest rotating pulsar known: PSR B1937+21. The ~200 ks observation (78.5 ks MECS/34 ks LECS on-source time) allowed us to investigate with high statistical significance both the spectral prope rties and the pulse profile shape. The pulse profile is clearly double peaked at energies > ~4 keV. Peak widths are compatible with the instrumental time resolution and the second pulse lags the main pulse 0.52 in phase, like is the case in the radio. In the 1.3-4 keV band we detect a ~45% DC component; conversely the 4-10 keV pulsed fraction is consistent with 100%. The on-pulse spectrum is fitted with an absorbed power-law of spectral index ~1.2, harder than that of the total flux which is ~1.9. The total unabsorbed (2-10 keV) flux is F_{2-10} = 4.1 10^-13 cgs, implying a luminosity of L_X = 5.0 10^31 Theta (d/3.6 kpc)^2 erg s^-1 and a X-ray efficiency of eta = 4.5 10^-5 Theta, where Theta is the solid angle spanned by the emission beam. These results are in agreement with those obtained by ASCA and a more recent Rossi-XTE observation. The hydrogen column density N_H ~2 10^22 cm^-2 is ~10 times higher than expected from the radio dispersion measure and average Galactic density of e-. Though it is compatible (within 2sigma) with the Galactic (HI derived) value of ~1 10^22 cm^-2, inspection of dust extinction maps reveal that the pulsar falls in a highly absorbed region. In addition, 1.4 GHz radio map shows that the nearby (likely unrelated) HII source 4C21.53W is part of a circular emission region ~4 across.
We present results from a BeppoSAX observation of the rich cluster Abell 3266. The broad band spectrum (2-50 keV) of the cluster, when fitted with an optically thin thermal emission model, yields a temperature of 8.1 +/- 0.2 keV and a metal abundance of 0.17 +/- 0.02 in solar units, and with no evidence of a hard X-ray excess in the PDS spectrum. By performing a spatially resolved spectral analysis we find that the projected temperature drops with increasing radius, going from ~ 10 keV at the cluster core to ~ 5 keV at about 1.5 Mpc. Our BeppoSAX temperature profile is in good agreement with the ASCA temperature profile of Markevitch et al. (1998). From our two-dimensional temperature map we find that the gradient is observed in all azimuthal directions. The temperature gradient may have been caused by a recent merger event also responsible for a velocity dispersion gradient measured in the optical band. The projected metal abundance profile and two-dimensional map are both consistent with being constant.
151 - A. N. Parmar 1997
We report on a BeppoSAX Concentrator Spectrometer observation of the super-soft source (SSS) CAL87. The X-ray emission in SSS is believed to arise from nuclear burning of accreted material on the surface of a white dwarf (WD). An absorbed blackbody s pectral model gives a chi^2_v of 1.18 and a temperature of 42 +/- ^13 _11 eV. However, the derived luminosity and radius are greater than the Eddington limit and radius of a WD. Including an O viii edge at 0.871 keV gives a significantly better fit (at > 95% confidence) and results in more realistic values of the source luminosity and radius. We also fit WD atmosphere models to the CAL87 spectrum. These also give reasonable bolometric luminosities and radii in the ranges 2.7-4.8 10^{36} erg/s and 8-20 10^7 cm, respectively. These results support the view that the X-ray emission from CAL87 results from nuclear burning in the atmosphere of a WD.
63 - Naoko Iyomoto 2001
Using the BeppoSAX observatory, we have observed a nearby LINER/Seyfert 2 galaxy, NGC 3079, which is known as an outflow galaxy and a bright H_2O-maser source. Using the PDS detector, we have revealed that the NGC 3079 nucleus suffers from a Compton- thick absorption, with a hydrogen column density sim 10^{25} cm^{-2}. After corrected the absorption, the 2--10 keV luminosity becomes 10^{42-43} erg s^{-1} at a distance of 16 Mpc. It is 2-3 orders of magnitude higher than that observed in the MECS band (below 10 kev). We also detected a strong Fe-K line at 6.4^{+0.3}_{-0.2} keV with an equivalent width of 2.4^{+2.9}_{-1.5} keV, which is consistent with the heavy absorption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا