ترغب بنشر مسار تعليمي؟ اضغط هنا

Differences in carbon and nitrogen abundances between field and cluster early-type galaxies

45   0   0.0 ( 0 )
 نشر من قبل Patricia Sanchez-Blazquez
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Central line-strength indices were measured in the blue spectral region for a sample of 98 early-type galaxies in different environments. For most indices (Mgb and <Fe> in particular) ellipticals in rich clusters and in low-density regions follow the same index-sigma relations. However, striking spectral differences between field ellipticals and their counterparts in the central region of the Coma cluster are found for the first time, with galaxies in the denser environment showing significantly lower C4668 and CN2 absorption strengths. The most convincing interpretation of these results is a difference in abundance ratios, arising from a distinct star formation and chemical enrichment histories of galaxies in different environments. An scenario in which elliptical galaxies in clusters are fully assembled at earlier stages than their low-density counterparts is discussed.

قيم البحث

اقرأ أيضاً

240 - Elisa Toloba UCM 2008
For the first time, we undertake a systematic examination of the nitrogen abundances for a sample of 35 early-type galaxies spanning a range of masses and local environment. The nitrogen-sensitive molecular feature at 3360AA has been employed in conj unction with a suite of atomic- and molecular-sensitive indices to provide unique and definitive constraints on the chemical content of these systems. By employing NH3360, we are now able to break the carbon, nitrogen, and oxygen degeneracies inherent to the use of the CN-index. We demonstrate that the NH3360 feature shows little dependency upon the velocity dispersion (our proxy for mass) of the galaxies, contrary to what is seen for carbon- and magnesium-sensitive indices. At face value, these results are at odds with conclusions drawn previously using indices sensitive to both carbon and nitrogen, such as cyanogen (CN). With the aid of stellar population models, we find that the N/Fe ratios in these galaxies are consistent with being mildly-enhanced with respect to the solar ratio. We also explore the dependence of these findings upon environment, by analyzing the co-added spectra of galaxies in the field and the Coma cluster. We confirm the previously found differences in carbon abundances between galaxies in low- and high-density environments, while showing that these differences do not seem to exist for nitrogen. We discuss the implications of these findings for the derivation of the star formation histories in early-type galaxies, and for the origin of carbon and nitrogen, themselves.
126 - S.C. Trager 2006
It is currently impossible to determine the abundances of stellar populations star-by-star in dense stellar systems more distant than a few megaparsecs. Therefore, methods to analyse the composite light of stellar systems are required. I review recen t progress in determining the abundances and abundance ratios of early-type galaxies. I begin with `direct abundance measurements: colour--magnitude diagrams of and planetary nebula in nearby early-type galaxies. I then give an overview of `indirect abundance measurements: inferences from stellar population models, with an emphasis on cross-checks with `direct methods. I explore the variations of early-type galaxy abundances as a function of mass, age, and environment in the local Universe. I conclude with a list of continuing difficulties in the modelling that complicate the interpretation of integrated spectra and I look ahead to new methods and new observations.
We show that the masses of red giant stars can be well predicted from their photospheric carbon and nitrogen abundances, in conjunction with their spectroscopic stellar labels log g, Teff, and [Fe/H]. This is qualitatively expected from mass-dependen t post main sequence evolution. We here establish an empirical relation between these quantities by drawing on 1,475 red giants with asteroseismic mass estimates from Kepler that also have spectroscopic labels from APOGEE DR12. We assess the accuracy of our model, and find that it predicts stellar masses with fractional r.m.s. errors of about 14% (typically 0.2 Msun). From these masses, we derive ages with r.m.s errors of 40%. This empirical model allows us for the first time to make age determinations (in the range 1-13 Gyr) for vast numbers of giant stars across the Galaxy. We apply our model to 52,000 stars in APOGEE DR12, for which no direct mass and age information was previously available. We find that these estimates highlight the vertical age structure of the Milky Way disk, and that the relation of age with [alpha/M] and metallicity is broadly consistent with established expectations based on detailed studies of the solar neighbourhood.
Spectroscopic studies of low-luminosity early-type galaxies are essential to understand their origin and evolution but remain challenging because of low surface brightness levels. We describe an observational campaign with the new high-throughput Bin ospec spectrograph at the 6.5-m MMT. It targets a representative sample of dwarf elliptical (dE), ultra-diffuse (UDG), and dwarf spheroidal (dSph) galaxies. We outline our data analysis approach that features (i) a full spectrophotometric fitting to derive internal kinematics and star formation histories of galaxies; (ii) two-dimensional light profile decomposition; (iii) Jeans anisotropic modelling to assess their internal dynamics and dark matter content. We present first results for 9 UDGs in the Coma cluster and a nearby dSph galaxy, which suggest that a combination of internal (supernovae feedback) and environmental (ram-pressure stripping, interactions) processes can explain observed properties of UDGs and, therefore, establish an evolutionary link between UDGs, dSph, and dE galaxies.
Recent work suggests blue ellipticals form in mergers and migrate quickly from the blue cloud of star-forming galaxies to the red sequence of passively evolving galaxies, perhaps as a result of black hole feedback. Such rapid reddening of stellar pop ulations implies that large gas reservoirs in the pre-merger star-forming pair must be depleted on short time scales. Here we present pilot observations of atomic hydrogen gas in four blue early-type galaxies that reveal increasing spatial offsets between the gas reservoirs and the stellar components of the galaxies, with advancing post-starburst age. Emission line spectra show associated nuclear activity in two of the merged galaxies, and in one case radio lobes aligned with the displaced gas reservoir. These early results suggest that a kinetic process (possibly feedback from black hole activity) is driving the quick truncation of star formation in these systems, rather than a simple exhaustion of gas supply.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا