ترغب بنشر مسار تعليمي؟ اضغط هنا

Las Campanas Loose Groups in the Supercluster-Void Network

63   0   0.0 ( 0 )
 نشر من قبل Maret Einasto
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spatial distribution of loose groups from the Las Campanas Redshift Survey, comparing it with the supercluster-void network delineated by rich clusters of galaxies. We use density fields and the friends-of-friends algorithm to identify the members of superclusters of Abell clusters among the Las Campanas loose groups. We find that systems of loose groups tend to be oriented perpendicularly to the line-of-sight, and discuss possible reasons for that. We show that loose groups in richer systems (superclusters of Abell clusters) are themselves also richer and more massive than groups in systems without Abell clusters. Our results indicate that superclusters, as high density environments, have a major role in the formation and evolution of galaxy systems.

قيم البحث

اقرأ أيضاً

127 - D. L. Tucker 1997
A friends-of-friends percolation algorithm has been used to extract a catalogue of drho/rho = 80 density enhancements (groups) from the six slices of the Las Campanas Redshift Survey (LCRS). The full catalogue contains 1495 groups and includes 35% of the LCRS galaxy sample. A statistical sample of 394 groups has been derived by culling groups from the full sample which either are too close to a slice edge, have a crossing time greater than a Hubble time, have a corrected velocity dispersion of zero or less, or contain a 55 arcsec orphan (a galaxy with a faked redshift excluded from the original LCRS redshift catalogue due to its proximity --- i.e., within 55 arcsec --- of another galaxy). Median properties derived from the statistical sample include: line-of-sight velocity dispersion sigma_los = 164 km/s, crossing time t_cr = 0.10/H_0, harmonic radius R_h = 0.58/h Mpc, pairwise separation R_p = 0.64/h Mpc, virial mass M_vir = (1.90x10^13)/h M_sun, total group R-band luminosity L_tot = (1.40x10^11)/h^2 L_sun, and R-band mass-to-light ratio M/L = 153h M_sun/L_sun.
Majority of all galaxies reside in groups of less than 50 member galaxies. These groups are distributed in various large-scale environments from voids to superclusters. Evolution of galaxies is affected by the environment in which they reside. Our ai m is to study the effects that the local group scale and the supercluster scale environment have on galaxies. We use a luminosity-density field to determine density of the large-scale environment of galaxies in groups of various richness. We calculate fractions of different types of galaxies in groups with richnesses up to 50 member galaxies and in different large-scale environments from voids to superclusters. The fraction of passive elliptical galaxies rises and the fraction of star-forming spiral galaxies declines when the richness of a group of galaxies rises from two to approximately ten galaxies. On the large scale, the passive elliptical galaxies become more numerous than star-forming spirals when the environmental density grows to the density level typical for superclusters. The large-scale environment affects the level of these fractions in groups: galaxies in equally rich groups are more likely to be elliptical in supercluster environments than in lower densities. The crossing point, where the number of passive and star-forming galaxies is equal, happens in groups with lower richness in superclusters than in voids. Galaxies in low-density areas require richer groups to evolve from star-forming to passive. Groups in superclusters are on average more luminous than groups in large-scale environments with lower density. Our results suggest that the evolution of galaxies is affected by both, by the group in which the galaxy resides, and by its large-scale environment. Galaxies in lower-density regions develop later than galaxies in similar mass groups in high-density environments.
60 - Jaan Einasto 2006
A review of the study of superclusters based on the 2dFGRS and SDSS is given. Real superclusters are compared with models using simulated galaxies of the Millennium Run. We show that the fraction of very luminous superclusters in real samples is abou t five times greater than in simulated samples. Superclusters are generated by large-scale density perturbations which evolve very slowly. The absence of very luminous superclusters in simulations can be explained either by non-proper treatment of large-scale perturbations, or by some yet unknown processes in the very early Universe.
85 - D.L. Tucker 1996
Presented are measurements of the observed redshift-space galaxy-galaxy autocorrelation function, xi(s), for the Las Campanas Redshift Survey (LCRS). For separations 2.0/h Mpc < s < 16.4/h Mpc, xi(s) can be approximated by a power law with slope of - 1.52 +/- 0.03 and a correlation length of s_0 = (6.28 +- 0.27)/h Mpc. A zero-crossing occurs on scales of roughly 30 - 40/h Mpc. On larger scales, xi(s) fluctuates closely about zero, indicating a high level of uniformity in the galaxy distribution on these scales. In addition, two aspects of the LCRS selection criteria - a variable field-to-field galaxy sampling rate and a 55 arcsec galaxy pair separation limit - are tested and found to have little impact on the measurement of xi(s). Finally, the LCRS xi(s) is compared with those from numerical simulations; it is concluded that, although the LCRS xi(s) does not discriminate sharply among modern cosmological models, redshift-space distortions in the LCRS xi(s) will likely provide a strong test of theory.
The distribution of Abell clusters of galaxies is analysed to study the regularity of the supercluster-void network. A new geometric method sensitive to the regularity of the location of clusters is applied. We find that the supercluster-void network resembles a cubical lattice over the whole space investigated. The distribution of rich superclusters is not isotropic: along the main axis of the network it is periodic with a step of length about 130 Mpc (for Hubble constant h=1), whereas along the diagonal of the network the period is larger. This large-scale inhomogeneity is compatible with recent CMB data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا