ﻻ يوجد ملخص باللغة العربية
The flocculent structure of star formation in 7 galaxies has a Fourier transform power spectrum for azimuthal intensity scans with a power law slope that increases systematically from -1 at large scales to -1.7 at small scales. This is the same pattern as in the power spectra for azimuthal scans of HI emission in the Large Magellanic Clouds and for flocculent dust clouds in galactic nuclei. The steep part also corresponds to the slope of -3 for two-dimensional power spectra that have been observed in atomic and molecular gas surveys of the Milky Way and the Large and Small Magellanic Clouds. The same power law structure for star formation arises in both flocculent and grand design galaxies, which implies that the star formation process is the same in each. Fractal Brownian motion models that include discrete stars and an underlying continuum of starlight match the observations if all of the emission is organized into a global fractal pattern with an intrinsic 1D power spectrum having a slope between 1.3 and 1.8. We suggest that the power spectrum of optical light in galaxies is the result of turbulence, and that large-scale turbulent motions are generated by sheared gravitational instabilities which make flocculent spiral arms first and then cascade to form clouds and clusters on smaller scales.
Fourier transform power spectra of azimuthal scans of the optical structure of M33 are evaluated for B, V, and R passbands and fit to fractal models of continuum emission with superposed star formation. Power spectra are also determined for Halpha. T
We perform simulations of isolated galaxies in order to investigate the likely origin of the spiral structure in M33. In our models, we find that gravitational instabilities in the stars and gas are able to reproduce the observed spiral pattern and v
We present a detailed study of the flocculent spiral galaxy NGC 7793, part of the Sculptor group. By analyzing the resolved stellar populations of the galaxy, located at a distance of ~3.7 Mpc, we infer for the first time its radial star formation hi
One of the scenarios for the formation of grand-design spiral arms in disky galaxies involves their interactions with a satellite or another galaxy. Here we consider another possibility, where the perturbation is instead due to the potential of a gal
Anemic galaxies have less prominent star formation than normal galaxies of the same Hubble type. Previous studies showed they are deficient in total atomic hydrogen but not in molecular hydrogen. Here we compare the combined surface densities of HI a